已知數(shù)學公式,則向量數(shù)學公式的模的大小為


  1. A.
    3
  2. B.
    1
  3. C.
    數(shù)學公式
  4. D.
    2
C
分析:本題中已知向量的坐標,求向量的模直接用公式求解即可.
解答:∵
==
故選C
點評:本題考查空間向量的求模公式,屬于公式的直接應用題,基本題型,求解本題的關鍵是正確理解記憶模的公式,本題的解法是本類題型的通法,注意總結掌握.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•煙臺二模)設向量
a
=(a1,a2),
b
=(b2,b2),定義一種向量
a
?
b
=(a1,a2)?(b1,b2)=(a1b2,a2b2).已知
m
=(2,
1
2
),
n
=(
π
3
,0)
,點,(x,y)在y=sin x的圖象上運動,點Q在y=f(x)的圖象上運動且滿足
OQ
=
m
?
OP
+
n
(其中O為坐標原點),則y=f(x)的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天河區(qū)三模)設m∈R,在平面直角坐標系中,已知向量
a
=(x+
3
,my)
,向量
b
=(x-
3
,y)
,
a
b
,動點M(x,y)的軌跡為曲線E.
(I)求曲線E的方程,并說明該方程所表示曲線的形狀;
(II) 已知m=
3
4
,F(xiàn)(0,-1),直線l:y=kx+1與曲線E交于不同的兩點M、N,則△FMN的內切圓的面積是否存在最大值?若存在,求出這個最大值及此時的實數(shù)k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黑龍江二模)已知向量
a
,
b
c
滿足:|
a
|=1,|
b
|=
2
,
b
a
上的投影為
1
2
,(
a
-
c
)(
b
-
c
)=0,則|
c
|的最大值為
1+
2
2
1+
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•成都二模)已知空間向量
OA
=(1,K,0)(k∈Z)
|
OA
| ≤3
,
OB
=(3,1,0)
,O為坐標原點,給出以下結論:①以OA、OB為鄰邊的平行四邊形OACB中,當且僅當k=2時,|
OC
|
取得最小值;②當k=2時,到A和點B等距離的動點P(x,y,z)的軌跡方程為4x-2y-5=0,其軌跡是一條直線;③若
OP
=(0,0,1)
,則三棱錐O-ABP體積的最大值為
7
6
;④若
OP
=(0,0,1),則三棱錐O-ABP各個面都為直角三角形的概率為
2
5
.其中,所有正確結論的應是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•潮州二模)設向量
a
=(a1,a2),
b
=(b1,b2)
,定義一運算:
a
?
b
=(a1,a2)
?(b1,b2)=(a1b1,a2b2).已知
m
=(
1
2
,2),
.
n
=(x1,sinx1)
,點Q在y=f(x)的圖象上運動,且滿足
.
OQ
m
?
n
(其中O為坐標原點),則y=f(x)的最大值及最小正周期分別是( 。

查看答案和解析>>

同步練習冊答案