【題目】下列推理過程不是演繹推理的是( )
①一切奇數(shù)都不能被2整除,2019是奇數(shù),2019不能被2整除;
②由“正方形面積為邊長的平方”得到結(jié)論:正方體的體積為棱長的立方;
③在數(shù)列中,,由此歸納出的通項公式;
④由“三角形內(nèi)角和為”得到結(jié)論:直角三角形內(nèi)角和為.
A. ①② B. ③④ C. ②③ D. ②④
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X)
P( K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)設 是的極值點.求實數(shù)的值,并求函數(shù)的單調(diào)區(qū)間;
(II)證明:當 時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓 (a>b>0)的左、右焦點分別為F1(﹣c,0),F(xiàn)2(c,0).已知(1,e)和(e, )都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓的方程;
(2)設A,B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,AF2與BF1交于點P.
(i)若AF1﹣BF2= ,求直線AF1的斜率;
(ii)求證:PF1+PF2是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
(1)[選修4﹣1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
(2)[選修4﹣2:矩陣與變換]
已知矩陣A的逆矩陣 ,求矩陣A的特征值.
(3)[選修4﹣4:坐標系與參數(shù)方程]
在極坐標中,已知圓C經(jīng)過點P( , ),圓心為直線ρsin(θ﹣ )=﹣ 與極軸的交點,求圓C的極坐標方程.
(4)[選修4﹣5:不等式選講]
已知實數(shù)x,y滿足:|x+y|< ,|2x﹣y|< ,求證:|y|< .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是( 。
A.(0,1)B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,則_____.
【答案】
【解析】
分子分母同時除以,把目標式轉(zhuǎn)為的表達式,代入可求.
,則
故答案為:.
【點睛】
本題考查三角函數(shù)的化簡求值,常用方法:(1)弦切互化法:主要利用公式, 形如等類型可進行弦化切;(2)“1”的靈活代換和的關(guān)系進行變形、轉(zhuǎn)化.
【題型】填空題
【結(jié)束】
15
【題目】如圖,正方體的棱長為1,為中點,連接,則異面直線和所成角的余弦值為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知O為坐標原點,F(xiàn)是橢圓C: =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com