函數(shù)f(x)=3x-x3在區(qū)間(a2-12,a)上有最小值,則實(shí)數(shù)a的取值范圍是
(-1,2]
(-1,2]
分析:求函數(shù)f(x)=3x-x3導(dǎo)數(shù),由于函數(shù)在區(qū)間(a2-12,a)上有最小值,故最小值點(diǎn)的橫坐標(biāo)是集合(a2-12,a)的元素,由此可以得到關(guān)于參數(shù)a的等式,解之求得實(shí)數(shù)a的取值范圍.
解答:解:由f(x)=3x-x3
得f'(x)=3-3x2,
令f'(x)>0,解得-1<x<1;令f'(x)<0解得x<-1或x>1
由此得函數(shù)在(-∞,-1)上是減函數(shù),在(-1,1)上是增函數(shù),在(1,+∞)上是減函數(shù)
故函數(shù)在x=-1處取到極小值-2,
因?yàn)楹瘮?shù)在(a2-12,a)的端點(diǎn)處的函數(shù)值取不到,
所以此極小值必是區(qū)間(a2-12,a)上的最小值.
∴a2-12<-1<a,解得-1<a<
11

又當(dāng)x=2時(shí),f(2)=-2,故有a≤2
綜上知a∈(-1,2].
故答案為(-1,2].
點(diǎn)評(píng):本題考查用導(dǎo)數(shù)研究函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的最值是導(dǎo)數(shù)作為數(shù)學(xué)中工具的一個(gè)重要運(yùn)用,要注意把握其作題步驟,求導(dǎo),確定單調(diào)性,得出最值,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

27、對(duì)于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的“不動(dòng)點(diǎn)”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=3x+4求集合A和B;
(2)求證:A⊆B;
(3)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明函數(shù)f(x)=
3x+1
在[3,5]上單調(diào)遞減,并求函數(shù)在[3,5]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x,x≤0
log3x,x>0
,則f(f(-
1
2
))=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x-1
x+1

(1)已知s=-t+
1
2
(t>1),求證:f(
t-1
t
)=
s+1
s
;
(2)證明:存在函數(shù)t=φ(s)=as+b(s>0),滿足f(
s+1
s
)=
t-1
t
;
(3)設(shè)x1=
11
17
,xn+1=f(xn),n=1,2,….問(wèn):數(shù)列{
1
xn-1
}是否為等差數(shù)列?若是,求出數(shù)列{xn}中最大項(xiàng)的值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x
+1,則
lim
△x→0
f(1-△x)-f(1)
△x
的值為( 。
A、-
1
3
B、
1
3
C、
2
3
D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案