已知數(shù)列{an}中a1=1,a2=
1
1+2
,a3=
1
1+2+3
,a4=
1
1+2+3+4
,…則數(shù)列{an}的前n項的和Sn=( 。
分析:可得an=
1
1+2+3+…+n
=2(
1
n
-
1
n+1
),裂項相消可求和.
解答:解:由題意可得an=
1
1+2+3+…+n
=
1
n(n+1)
2
=
2
n(n+1)
=2(
1
n
-
1
n+1
),
故Sn=2(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=2(1-
1
n+1
)=
2n
n+1

故選C
點評:本題考查數(shù)列的求和,涉及等差數(shù)列的求和公式和裂項相消法求和,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=-10,且經過點A(an,an+1),B(2n,2n+2)兩點的直線斜率為2,n∈N*
(1)求證數(shù)列{
an2n
}
是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的最小項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,an=3n+4,若an=13,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1為由曲線y=
x
,直線y=x-2及y軸
所圍成圖形的面積的
3
32
Sn為該數(shù)列的前n項和,且Sn+1=an(1-an+1)+Sn
(1)求數(shù)列{an}的通項公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
對一切正整數(shù)n都成立,求正整數(shù)a的最大值,并證明結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an對任意x∈N*恒成立,則實數(shù)λ的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中an=n2-kn(n∈N*),且{an}單調遞增,則k的取值范圍是( 。

查看答案和解析>>

同步練習冊答案