函數(shù)f(x)=ex在x=2xn處的切線與x軸交于點(diǎn)(xn+1,0),其中n∈N*,若x1=
3
2
,則數(shù)列(xn)的前n項(xiàng)和Sn=
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先利用導(dǎo)數(shù)求出切線的斜率,從而求出切線方程,然后根據(jù)切線與x軸的交點(diǎn)為(xn+1,0),可得xn+1與xn的關(guān)系,再利用等差數(shù)列的求和公式求解即可.
解答: 解:由題可得f′(x)=ex,
所以曲線y=f(x)在點(diǎn)(2xn,f(2xn))處的切線方程是:y-f(2xn)=f′(2xn)(x-2xn).
即y-e2xn=e2xn(x-xn).
令y=0,得-e2xn=e2xn(xn+1-xn).
即xn+1-xn=-1.
∵x1=
3
2
,
∴Sn=
3
2
n-
n(n-1)
2
=
4n-n2
2

故答案為:
4n-n2
2
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線在某點(diǎn)處的切線,以及導(dǎo)數(shù)的幾何意義,同時(shí)考查了運(yùn)算求解的能力和分析問題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三位同學(xué)玩投籃游戲,他們每次投中的概率分別是0.4,0.6,0.5,他們每人投籃一次,求:
(1)恰有兩人投中的概率;
(2)至少有一人投中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B為兩個(gè)隨機(jī)事件,若P(B)=
1
2
,P(A|B)=
1
3
,則P(AB)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中a,b,c分別為角A,B,C所對(duì)的邊,已知c(acosB-bcosA)=b2,且△ABC的面積為
1
2
b2,則∠C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=2
a
-3
b
,
n
=4
a
-2
b
,
p
=3
a
+
b
,將向量
p
用向量
m
n
表示為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1的參數(shù)方程為
x=4+5cost
y=5+5sint
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(a2-a-2)+(a+1)i(a∈R)為純虛數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x與y之間的一組數(shù)據(jù)如表,則y與x的線性回歸方程為y=bx+a,必過點(diǎn)
 

x 1 1 2 4
y 1 4 5 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=
3
3
,則 
cos2α
cos2α
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案