【題目】已知在多面體中,,,,,且平面平面.
(1)設(shè)點(diǎn)為線段的中點(diǎn),試證明平面;
(2)若直線與平面所成的角為,求二面角的余弦值.
【答案】(1)詳見解析(2)
【解析】
(1)由四邊形為平行四邊形.∴,再結(jié)合平面,即可證明平面;
(2)由空間向量的應(yīng)用,建立以為原點(diǎn),所在直線為軸,過點(diǎn)與平行的直線為軸,所在直線為軸的空間直角坐標(biāo)系,再求出平面的法向量,平面的法向量,再利用向量夾角公式求解即可.
(1)證明:取的中點(diǎn),連接,,
∵在中,∴.
∴由平面平面,且交線為得平面.
∵,分別為,的中點(diǎn),∴,且.
又,,∴,且.
∴四邊形為平行四邊形.∴,
∴平面.
(2)∵平面,,
∴以為原點(diǎn),所在直線為軸,過點(diǎn)與平行的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.則,,.
∵平面,∴直線與平面所成的角為.
∴.∴.
可取平面的法向量,
設(shè)平面的法向量,,,
則,取,則,.∴,
∴,
∴二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若曲線在處切線的斜率為,求此切線方程;
(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)《山東省全民健身實(shí)施計(jì)劃(2016-2020年)》,到2020年鄉(xiāng)鎮(zhèn)(街道)普遍建有“兩個(gè)一”工程,即一個(gè)全民健身活動中心或燈光籃球場、一個(gè)多功能運(yùn)動場.某市把甲、乙、丙、丁四個(gè)多功能運(yùn)動場全部免費(fèi)為市民開放.
(1)在一次全民健身活動中,四個(gè)多功能運(yùn)動場的使用場數(shù)如圖,用分層抽樣的方法從甲、乙、丙、丁四場館的使用場數(shù)中依次抽取,,,共25場,在,,,中隨機(jī)取兩數(shù),求這兩數(shù)和的分布列和數(shù)學(xué)期望;
(2)設(shè)四個(gè)多功能運(yùn)動場一個(gè)月內(nèi)各場使用次數(shù)之和為,其相應(yīng)維修費(fèi)用為元,根據(jù)統(tǒng)計(jì),得到如下表的與數(shù)據(jù):
10 | 15 | 20 | 25 | 30 | 35 | 40 | |
2302 | 2708 | 2996 | 3219 | 3401 | 3555 | 3689 | |
2.49 | 2.99 | 3.55 | 4.00 | 4.49 | 4.99 | 5.49 |
(i)用最小二乘法求與之間的回歸直線方程;
(ii)叫做運(yùn)動場月惠值,根據(jù)(i)的結(jié)論,試估計(jì)這四個(gè)多功能運(yùn)動場月惠值最大時(shí)的值.
參考數(shù)據(jù)和公式:,,,,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:的離心率是,長軸是圓:的直徑.點(diǎn)是橢圓的下頂點(diǎn),,是過點(diǎn)且互相垂直的兩條直線,與圓相交于,兩點(diǎn),交橢圓于另一點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)的面積取最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論:
①若點(diǎn)為角終邊上一點(diǎn),則;
②命題“存在,”的否定是“對于任意的,”;
③若函數(shù)在上有零點(diǎn),則;
④“(且)”是“,”的必要不充分條件.
其中正確結(jié)論的個(gè)數(shù)是()
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),等腰梯形,,,,,分別是的兩個(gè)三等分點(diǎn),若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn), 如圖(2).
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng), , .
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若Sn<100,求最大正整數(shù)n;
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請給以證明;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,,,,,點(diǎn)在上,且,將沿折起,使得平面平面(如圖),為中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成的角的正弦值.
(3)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某電子元件進(jìn)行壽命追蹤調(diào)查,所得情況如下頻率分布直方圖.
(1)圖中縱坐標(biāo)處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取個(gè)元件,壽命為之間的應(yīng)抽取幾個(gè);
(3)從(2)中抽出的壽命落在之間的元件中任取個(gè)元件,求事件“恰好有一個(gè)壽命為,一個(gè)壽命為”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com