已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn).當(dāng)時(shí),M恰為橢圓的上頂點(diǎn),此時(shí)△的周長為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左頂點(diǎn)為A,直線與直線分別相交于點(diǎn),,問當(dāng)

變化時(shí),以線段為直徑的圓被軸截得的弦長是否為定值?若是,求出這個(gè)定值,

若不是,說明理由.

 

【答案】

(I)橢圓方程是:

(II)以為直徑的圓一定過右焦點(diǎn),被軸截得的弦長為定值6.

【解析】本試題主要是考查了直線與橢圓的 位置關(guān)系的綜合運(yùn)用。

(1)由題意可知三角形的周長和斜率用參數(shù)a,b,c表示出來得到結(jié)論。

(2)當(dāng)變化時(shí),以線段為直徑的圓被軸截得的弦長是否為定值,要分析m=0,m不為零的情況,結(jié)合直線與橢圓方程聯(lián)立方程組,得到韋達(dá)定理和向量的關(guān)系來證明

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式的左右焦點(diǎn)分別是F1,F(xiàn)2,過右焦點(diǎn)F2且斜率為k的直線與橢圓交于A,B兩點(diǎn).
(1)若k=1,求|AB|的長度、△ABF1的周長;
(2)若數(shù)學(xué)公式,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:

分別相交于點(diǎn),問當(dāng)變化時(shí),以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個(gè)定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:

分別相交于點(diǎn),問當(dāng)變化時(shí),以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個(gè)定值,若不是,

說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:

分別相交于點(diǎn),問當(dāng)變化時(shí),以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個(gè)定值,若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案