9.已知橢圓C經過點(1,0),(0,2),則橢圓C的標準方程為(  )
A.x2+$\frac{y^2}{2}$=1B.$\frac{x^2}{2}$+y2=1C.x2+$\frac{y^2}{4}$=1D.$\frac{x^2}{4}$+y2=1

分析 橢圓C經過點(1,0),(0,2),則橢圓C的焦點在y軸上,設標準方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0).即可得出.

解答 解:∵橢圓C經過點(1,0),(0,2),
則橢圓C的焦點在y軸上,設標準方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0).
則a=2,b=1.
∴橢圓C的標準方程為$\frac{{y}^{2}}{4}+{x}^{2}$=1.
故選:C.

點評 本題考查了橢圓的標準方程及其性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0.
(1)當a為何值時,直線l與圓C相切;
(2)若直線l過點(0,2)與圓C相交于點A、B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)=2{cos^2}(x-\frac{π}{4})-\sqrt{3}$cos2x+1,
(1)求f(x)的圖象的對稱軸方程;
(2)求f(x)在$[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值;
(3)若對任意實數(shù)x,不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.數(shù)據(jù)0.7,1,0.8,0.9,1.1的方差是0.02.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知平面直角坐標系xoy中,點P(1,0),曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosφ\\ y=sinφ\end{array}\right.$(φ為參數(shù)).以原點O為極點,x軸的正半軸為極軸建立極坐標系,傾斜角為α的直線l的極坐標方程為ρsin(α-θ)=sinα.
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)若曲線C與直線l交于M,N兩點,且$|{\frac{1}{{|{PM}|}}-\frac{1}{{|{PN}|}}}|=\frac{1}{3}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.雙曲線x2-y2=1的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,PC⊥平面ABC,∠PAC=30°,∠ACB=45°,BC=2$\sqrt{2}$,PA⊥AB.
(1)求PC的長;
(2)若點M在側棱PB上,且$\overrightarrow{BM}=λ\overrightarrow{MP}$,當λ為何值時,二面角B-AC-M的大小為30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知AD是△ABC內角∠BAC的角平分線.
(1)用正弦定理證明:$\frac{AB}{AC}=\frac{DB}{DC}$;
(2)若∠BAC=120°,AB=2,AC=1,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.從1,2,3,4,5,6這6個數(shù)字中任取三個數(shù)字,其中:①至少有一個偶數(shù)與都是偶數(shù);②至少有一個偶數(shù)與都是奇數(shù);③至少有一個偶數(shù)與至少有一個奇數(shù);④恰有一個偶數(shù)與恰有兩個偶數(shù).上述事件中,是互斥但不對立的事件是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案