年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂
巢的截面圖. 其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,
以表示第幅圖的蜂巢總數(shù),則=_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
請(qǐng)閱讀下列材料:若兩個(gè)正實(shí)數(shù)a1,a2滿(mǎn)足a12+a22=1,那么a1+a2≤.
證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因?yàn)閷?duì)一切實(shí)數(shù)x,恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2≤.
根據(jù)上述證明方法,若n個(gè)正實(shí)數(shù)滿(mǎn)足a12+a22+…+an2=1時(shí),你能得到的結(jié)論為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
小明在做一道數(shù)學(xué)題目時(shí)發(fā)現(xiàn):若復(fù)數(shù),(其中), 則, ,根據(jù)上面的結(jié)論,可以提出猜想: z1·z2·z3= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
求“方程的解”有如下解題思路:設(shè),則在上單調(diào)遞減,且,所以原方程有唯一解.類(lèi)比上述解題思路,方程的解為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
當(dāng)成等差數(shù)列時(shí),有當(dāng)成等差數(shù)列時(shí),有當(dāng)成等差數(shù)列時(shí),有由此歸納,當(dāng) 成等差數(shù)列時(shí),有.如果成等比數(shù)列,類(lèi)比上述方法歸納出的等式為_(kāi)_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖是網(wǎng)絡(luò)工作者經(jīng)常用來(lái)解釋網(wǎng)絡(luò)運(yùn)作的蛇形模型:數(shù)字1出現(xiàn)在第1行;數(shù)字2,3出現(xiàn)在第2行;數(shù)字6,5,4(從左至右)出現(xiàn)在第3行;數(shù)字7,8,9,10出現(xiàn)在第4行,依此類(lèi)推,則(1)按網(wǎng)絡(luò)運(yùn)作順序第n行第1個(gè)數(shù)字(如第2行第1個(gè)數(shù)字為2,第3行第1個(gè)數(shù)字為4,…)是________;(2)第63行從左至右的第4個(gè)數(shù)字應(yīng)是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com