精英家教網 > 高中數學 > 題目詳情
設M=10a2+81a+207,P=a+2,Q=26-2a;若將lgM,lgQ,lgP適當排序后可構成公差為1的等差數列{an}的前三項.
(1)試比較M、P、Q的大。
(2)求a的值及{an}的通項;
(3)記函數f(x)=anx2+2an+1x+an+2(n∈N*)的圖象在x軸上截得的線段長為bn,設Tn=
1
4
(b1b2+b2b3+…+bn-1bn
)(n≥2),求Tn,并證明T2T3T4…Tn
2n-1
n
(1)由
M=10a2+81a+207>0
P=a+2>0
Q=26-2a>0
,得-2<a<13,
∵M-Q=10a2+83a+181>0(∵△1<0),M-P=10a2+80a+205>0(∵△2<0),∴M>Q,M>P,
又∵當-2<a<13時,P-Q=-24+3a,
則當-2<a<8時,P<Q,此時P<Q<M,
當a=8時,P=Q,此時P=Q<M,
當8<a<13時,P>Q,此時Q<P<M;
(2)由(1)知,當-2<a<8時,
lgP+1=lgQ
lgM=1+lgQ
10P=Q
M=10Q
,∴
26-2a=10(a+2)
10a2+81a+207=10(26-2a)
,
解得a=
1
2
,從而an=lgP+(n-1)×1=n-2lg2;
當8<a<13時,
lgQ+1=lgP
lgM=1+lgP
P=10Q
M=10P
,∴
a+2=10(26-2a)
10a2+81a+207=10(a+2)
,a無解.
綜上,a=
1
2
,an=n-2lg2;
(3)設f(x)與x軸交點為(x1,0),(x2,0),
∵2an+1=an+an+2,∴-1為f(x)的一個零點,
∴當f(x)=0時有(x+1)(anx+an+2)=0,∴x1=-1, x2=-
an+2
an
=-
an+2
an
,
bn=|x1-x2|=|-1+
an+2
an
|=
2
|an|

又∵an=n-2lg2>0,∴bn=
2
an
,
bn-1bn=
2
an-1
×
2
an
=4(
1
an-1
-
1
an
)
,
Tn=
1
4
×4[(
1
a1
-
1
a2
)+(
1
a2
-
1
a3
)+…+(
1
an-1
-
1
an
)]
=
1
a1
-
1
an
=
1
1-2lg2
-
1
n-2lg2
=
n-1
(1-2lg2)(n-2lg2)

Tn=
n-1
(1-2lg2)(n-2lg2)
n-1
1
2
n
=
2(n-1)
n
,
T2T3T4Tn
2
2
2•2
3
2•3
4
2•4
5
2(n-1)
n
=
2n-1
n
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設M=10a2+81a+207,P=a+2,Q=26-2a;若將lgM,lgQ,lgP適當排序后可構成公差為1的等差數列{an}的前三項.
(1)試比較M、P、Q的大小;
(2)求a的值及{an}的通項;
(3)記函數f(x)=anx2+2an+1x+an+2(n∈N*)的圖象在x軸上截得的線段長為bn,設Tn=
1
4
(b1b2+b2b3+…+bn-1bn
)(n≥2),求Tn,并證明T2T3T4…Tn
2n-1
n

查看答案和解析>>

科目:高中數學 來源: 題型:

設M=10a2+81a+207,P=a+2,Q=26-2a,若將lgM,lgQ,lgP適當排序后可構成公差為1的等差數列{an}的前三項.
(Ⅰ)求a的值及{an}的通項公式;
(Ⅱ)記函數f(x)=anx2+2an+1x+an+2(n∈N*)的圖象在x軸上截得的線段長為bn,設 Tn=
14
(b1b2+b2b3+…+bn-1bn)
,求Tn

查看答案和解析>>

科目:高中數學 來源:2013-2014學年廣東省珠海一中等六校高三(上)第一次聯考數學試卷(理科)(解析版) 題型:解答題

設M=10a2+81a+207,P=a+2,Q=26-2a;若將lgM,lgQ,lgP適當排序后可構成公差為1的等差數列{an}的前三項.
(1)試比較M、P、Q的大小;
(2)求a的值及{an}的通項;
(3)記函數f(x)=anx2+2an+1x+an+2(n∈N*)的圖象在x軸上截得的線段長為bn,設Tn=)(n≥2),求Tn,并證明T2T3T4…Tn

查看答案和解析>>

科目:高中數學 來源:2012-2013學年新課標高三(上)數學一輪復習單元驗收5(理科)(解析版) 題型:解答題

設M=10a2+81a+207,P=a+2,Q=26-2a,若將lgM,lgQ,lgP適當排序后可構成公差為1的等差數列{an}的前三項.
(Ⅰ)求a的值及{an}的通項公式;
(Ⅱ)記函數的圖象在x軸上截得的線段長為bn,設 ,求Tn

查看答案和解析>>

同步練習冊答案