已知拋物線x2=8y的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且(λ>0),
過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M.
(1)證明線段FM被x軸平分;
(2)計(jì)算的值;
(3)求證:

【答案】分析:(1)設(shè),由曲線8y=x2上任意一點(diǎn)斜率為y'=,由已知,A,B,F(xiàn)三點(diǎn)共線,設(shè)直線AB的方程為:y=kx+2與拋物線方程x2=8y聯(lián)立消y,從而得解;
(2)先求得,進(jìn)而可求得 的結(jié)果為0,
(3)先求得∵,∵,從而可解.
解答:解:(1)設(shè),,由曲線8y=x2上任意一點(diǎn)斜率為y'=,
直線AM的方程為:
直線BM的方程為:                   
解方程組得  即
由已知,A,B,F(xiàn)三點(diǎn)共線,設(shè)直線AB的方程為:y=kx+2
與拋物線方程x2=8y聯(lián)立消y可得:x2-8kx-16=0,∴x1+x2=8k,x1x2=-16
所以M點(diǎn)的縱坐標(biāo)為-2,,所以線段FM中點(diǎn)的縱坐標(biāo)為0
即線段FM被x軸平分.                                   
(2),

由(1)x1+x2=8k,代入得
(3)∵,∵,


點(diǎn)評(píng):本題主要考查了拋物線的應(yīng)用.拋物線與直線的關(guān)系和拋物線的性質(zhì)等都是近幾年高考的熱點(diǎn),故應(yīng)重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線x2=8y的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且
AF
FB
(λ>0),
過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M.
(1)證明線段FM被x軸平分;
(2)計(jì)算
FM
AB
的值;
(3)求證:
AM
BM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•寧波模擬)已知拋物線x2=8y的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且
AF
FB
(λ>0)
,過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M
(1)證明線段FM被x軸平分;       
(2)計(jì)算
FM
AB
的值;
(3)求證|FM|2=|FA|•|FB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線x2=8y的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且數(shù)學(xué)公式(λ>0),
過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M.
(1)證明線段FM被x軸平分;
(2)計(jì)算數(shù)學(xué)公式的值;
(3)求證:數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省寧波市十校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知拋物線x2=8y的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且,過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M
(1)證明線段FM被x軸平分;       
(2)計(jì)算的值;
(3)求證|FM|2=|FA|•|FB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案