某工廠有一個(gè)容量為300噸的水塔,每天從早上6時(shí)起到晚上10時(shí)止供應(yīng)該廠的生活和生產(chǎn)用水,已知該廠生活用水為每小時(shí)10噸,工業(yè)用水量W(噸)與時(shí)間t(單位:小時(shí),且定義早上6時(shí)t=0)的函數(shù)關(guān)系為W=100,水塔的進(jìn)水量分為10級(jí),第一級(jí)每小時(shí)進(jìn)水10噸,以后每提高一級(jí),每小時(shí)進(jìn)水量就增加10噸,若某天水塔原有水100噸,在開(kāi)始供水的同時(shí)打開(kāi)進(jìn)水管,問(wèn)進(jìn)水量選擇為第幾級(jí)時(shí),既能保證該廠的用水(水塔中不空)又不會(huì)使水塔溢水?

答案:
解析:

設(shè)進(jìn)水量選用第n級(jí),在t時(shí)刻水塔中的水存有量為

y=100+10nt-10t-100(0<t≤16)

要使水塔中的水不空也不溢,則必然有0<y≤300,即

0<100+10nt-10t-100≤300

由題意知上述不等式對(duì)一切0<t≤16恒成立

上式當(dāng)t=4時(shí)取等號(hào)

上式當(dāng)t=16時(shí)取等號(hào)

又n∈∴n=4

故選擇第4級(jí)進(jìn)水量,既能保證該廠用水,又不會(huì)使水溢出


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有16件.那么此樣本的容量n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為x:3:5.現(xiàn)用分層抽樣的方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有16件,C種型號(hào)產(chǎn)品有40件,( 。
A、x=2,n=24B、x=16,n=24ks**5uC、x=2,n=80D、x=16,n=80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,其中A型號(hào)產(chǎn)品有16件,那么此樣品容量為n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A,B,C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A型號(hào)產(chǎn)品有16件,則此樣本的容量為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有16件.那么此樣本的容量n=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案