設(shè)變量x,y滿足約束條件
3x+y-6≥0
x-y-2≤0
y-3≤0
,且目標(biāo)函數(shù)z=y+ax的最小值為-7,則a的值為(  )
A、-2B、-4C、-1D、1
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
則B(2,0),
y=3
3x+y-6=0
,解得
x=1
y=3
,即C(1,3),
y=3
x-y-2=0
,解得
x=5
y=3
,即A(5,3).
設(shè)z=y+ax得y=-ax+z,則直線的截距最小,z也最。
∵目標(biāo)函數(shù)z=y+ax的最小值為-7,
∴當(dāng)a=0時,目標(biāo)函數(shù)為y=z,此時最小值z=0不成立.
當(dāng)a>0時,直線的斜率k=-a<0,
則此時當(dāng)直線經(jīng)過點B(2,0)時,取得最小值,即2a=-7,此時a=-
7
2
,此時不成立.
當(dāng)a<0時,直線的斜率k=-a>0,
則此時當(dāng)直線經(jīng)過點A(5,3)時,取得最小值,即5a+3=-7,此時a=-2,
故選:A.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-
1
x
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

節(jié)日里某家前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨立,若接通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈在4秒內(nèi)間隔閃亮,那么這兩串彩燈同時通電后它們第一次閃亮的時刻相差不超過1秒的概率是(  )
A、
5
16
B、
9
16
C、
1
4
D、
7
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)焦點的直線交拋物線于A、B兩點,則|AB|的最小值為( 。
A、
p
2
B、p
C、2p
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列4個結(jié)論中其中正確的序號是 ( 。
A、已知cosα=
1
3
,cos(α+β)=1則cos(2α+β)的值為
1
3
B、已知2a=3b=k(k≠1)且2a+b=ab,則實數(shù)k的值為36
C、已知函數(shù)f(x)=
x2-1,x≥0
-1,x<0
,則滿足不等式f(2-x2)>f(3x)的x的取值范圍是(-
2
,
-3+
17
2
)
D、已知函數(shù)f(x)對任意x,y都有f(x+y)=f(x)+f(y)-1,且當(dāng)x>0時,f(x)>1,若關(guān)于x的不等式f(x2-ax+b)<1的解集為{x|-3<x<2},則a+b=-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域為{x|-3≤x≤8,且x≠5},值域為{y|-1≤y≤2,且y≠0}.下列關(guān)于函數(shù)y=f(x)的說法:①當(dāng)x=-3時,y=-1;②將y=f(x)的圖象補上點(5,0),得到的圖象必定是一條連續(xù)的曲線;③y=f(x)是[-3,5)上的單調(diào)函數(shù);④y=f(x)的圖象與坐標(biāo)軸只有一個交點.其中正確命題的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班優(yōu)秀生16人,中等生24人,學(xué)困生8人,現(xiàn)采用分層抽樣的方法從這些學(xué)生中抽取6名學(xué)生做學(xué)習(xí)習(xí)慣調(diào)查,
(Ⅰ)求應(yīng)從優(yōu)秀生、中等生、學(xué)困生中分別抽取的學(xué)生人數(shù);
(Ⅱ)若從抽取的6名學(xué)生中隨機抽取2名學(xué)生做進一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2名學(xué)生均為中等生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩個地區(qū)高三年級分別有33000人,30000人,為了了解兩個地區(qū)全體高三年級學(xué)生在該地區(qū)二模考試的數(shù)學(xué)成績情況,采用分層抽樣方法從兩個地區(qū)一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了如下的頻數(shù)分布統(tǒng)計表,規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀.
甲地區(qū):
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)231015
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x31
乙地區(qū):
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1298
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(Ⅰ)計算x,y的值;
(Ⅱ)根據(jù)抽樣結(jié)果分別估計甲地區(qū)和乙地區(qū)的優(yōu)秀率;若將此優(yōu)秀率作為概率,現(xiàn)從乙地區(qū)所有學(xué)生中隨機抽取3人,求抽取出的優(yōu)秀學(xué)生人數(shù)ξ的數(shù)學(xué)期望;
(Ⅲ)根據(jù)抽樣結(jié)果,從樣本中優(yōu)秀的學(xué)生中隨機抽取3人,求抽取出的甲地區(qū)學(xué)生人數(shù)η的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點為極點,x軸非負(fù)半軸為極軸,在兩種坐標(biāo)系中取相同單位的長度.已知直線l的方程為
ρcosθ-ρsinθ-1=0(ρ>0),曲線C的參數(shù)方程為
x=2cosα
y=2+2sinα
(α為參數(shù)),點M是曲線C上的一動點.
(Ⅰ)求線段OM的中點P的軌跡方程;
(Ⅱ)求曲線C上的點到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案