關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:
①由f(x1)=f(x2)=0可得x1-x2必是π的整數(shù)倍;
②y=f(x)的表達式可改寫為y="4" cos(2x-);
③y=f(x)的圖象關(guān)于點(-,0)對稱;
④y=f(x)的圖象關(guān)于直線x=-對稱.
其中正確命題的序號是 .
科目:高中數(shù)學 來源: 題型:填空題
函數(shù)f(x)=sin2x+2cos2x-,函數(shù)g(x)=mcos(2x-)-2m+3(m>0),若存在x1,x2∈[0,],使得f(x1)=g(x2)成立,則實數(shù)m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com