如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連接AD交⊙O于點E,連接BE與AC交于點F,求證BE平分∠ABC.

精英家教網(wǎng)
證明:∵CD=AC,
∴∠D=∠CAD.
∵AB=AC,
∴∠ABC=∠ACB.
∵∠EBC=∠CAD,
∴∠EBC=∠D.
∵∠ABC=∠ABE+∠EBC,∠ACB=∠D+∠CAD.
∴∠ABE=∠EBC,
即BE平分∠ABC.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

21、如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連接AD交⊙O于點E,連接BE與AC交于點F,求證BE平分∠ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖:⊙O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使CD=AC,連接AD交⊙O于點E,連接BE與AC交于點F.
(1)判斷BE是否平分∠ABC,并說明理由
(2)若AE=6,BE=8,求EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

[選做題]在下面A,B,C,D四個小題中只能選做兩題,每小題10分,共20分.
A.選修4-1:幾何證明選講
如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使CD=AC,連接AD交⊙O于點E,連接BE與AC交于點F,判斷BE是否平分∠ABC,并說明理由.
B.選修4-2:短陣與變換
已知矩陣M=
1
2
0
02
,矩陣M對應的變換把曲線y=sinx變?yōu)榍C,求C的方程.
C.選修4-4:坐標系與參數(shù)方程
已知曲線C的極坐標方程是ρ=4sin(θ+
π
4
)
,求曲線C的普通方程.
D.選修4-5:不等式選講
已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使CD=AC,連接AD交⊙O于點E,連接BE與AC交于點F.

⑴判斷BE是否平分∠ABC,并說明理由;

⑵若AE=6,BE=8,求EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江蘇省南京市金陵中學高三(上)期中數(shù)學試卷(解析版) 題型:解答題

[選做題]在下面A,B,C,D四個小題中只能選做兩題,每小題10分,共20分.
A.選修4-1:幾何證明選講
如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使CD=AC,連接AD交⊙O于點E,連接BE與AC交于點F,判斷BE是否平分∠ABC,并說明理由.
B.選修4-2:短陣與變換
已知矩陣,矩陣M對應的變換把曲線y=sinx變?yōu)榍C,求C的方程.
C.選修4-4:坐標系與參數(shù)方程
已知曲線C的極坐標方程是,求曲線C的普通方程.
D.選修4-5:不等式選講
已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

同步練習冊答案