函數(shù)f(x)=x3-3x2,給出下列命題
(1)f(x)是增函數(shù),無極值;  
(2)f(x)是減函數(shù),無極值
(3)f‘(x)的增區(qū)間為(-∞,o]及[2,+∞),減區(qū)間為[0,2];
(4)f(0)=0 是極大值,f(2)=-4是極小值.
其中正確的命題個(gè)數(shù)是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
分析:對(duì)函數(shù)f(x)=x3-3x2求導(dǎo),由f′(x)≥0得其單調(diào)增區(qū)間,f′(x)≤0得其單調(diào)減區(qū)間,問題即可得到解決.
解答:∵f′(x)=3x2-6x,由f′(x)≥0得x≥2或x≤0,f′(x)≤0得0≤x≤2,
∴f(x)的增區(qū)間為(-∞,o]及[2,+∞),減區(qū)間為[0,2],所以(3)正確,
f(0)=0 是極大值,f(2)=-4是極小值,(4)正確;
而(1)(2)均錯(cuò)誤,
故答案選B.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的應(yīng)用,解決的方法是對(duì)函數(shù)f(x)=x3-3x2求導(dǎo),利用導(dǎo)數(shù)符號(hào)判斷函數(shù)的單調(diào)性,屬于容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個(gè)零點(diǎn).
(1)求b的值;
(2)若1是其中一個(gè)零點(diǎn),求f(2)的取值范圍;
(3)若a=1,g(x)=f′(x)+3x2+lnx,試問過點(diǎn)(2,5)可作多少條直線與曲線y=g(x)相切?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)一模)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)x=1處的切線l不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線l的距離為
10
10
,若x=
2
3
時(shí),y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)已知函數(shù)f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0時(shí),試求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(2)若a=0,且曲線y=f(x)在點(diǎn)A、B(A、B不重合)處切線的交點(diǎn)位于直線x=2上,證明:A、B 兩點(diǎn)的橫坐標(biāo)之和小于4;
(3)如果對(duì)于一切x1、x2、x3∈[0,1],總存在以f(x1)、f(x2)、f(x3)為三邊長(zhǎng)的三角形,試求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3ax+b(a≠0),已知曲線y=f(x)在點(diǎn)(2,f(x))處在直線y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=x3+ax2-x+1的極值情況,4位同學(xué)有下列說法:甲:該函數(shù)必有2個(gè)極值;乙:該函數(shù)的極大值必大于1;丙:該函數(shù)的極小值必小于1;。悍匠蘤(x)=0一定有三個(gè)不等的實(shí)數(shù)根. 這四種說法中,正確的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案