已知變量x,y滿(mǎn)足
x-2y+2≥0
2x-y-2≤0
y≥0
,則z=3x+y的最小值是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:本題考查的知識(shí)點(diǎn)是線性規(guī)劃,處理的思路為:根據(jù)已知的約束條件畫(huà)出滿(mǎn)足約束條件
x-2y+2≥0
2x-y-2≤0
y≥0
的可行域,再用角點(diǎn)法,求出目標(biāo)函數(shù)的最小值.
解答: 解:滿(mǎn)足約束條件
x-2y+2≥0
2x-y-2≤0
y≥0
的可行域如下圖中陰影部分所示:

∵目標(biāo)函數(shù)Z=3x+y,
∴ZA=-6,ZB=3,ZC=8,
故z=3x+y的最小值是-6,
故答案為:-6
點(diǎn)評(píng):用圖解法解決線性規(guī)劃問(wèn)題時(shí),分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類(lèi)、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點(diǎn)的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=msinx+cosx(x∈R)的圖象經(jīng)過(guò)點(diǎn)(
π
2
,1).
(1)求f(x)的解析式,并求函數(shù)的最小正周期.
(2)若g(x)=f(x)+1,求函數(shù)g(x)的最小值及此時(shí)x的值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把一枚硬幣任意拋擲兩次,事件A為:“第一次出現(xiàn)反面”,事件B為“第二次出現(xiàn)正面”,則P(B|A)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AD=3,AA1=5,∠BAA1=∠DAA1=60°,則AC1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐S-ABCD中,底面ABCD為平行四邊形,E為SD上一點(diǎn),滿(mǎn)足
SE
=2
ED
,G為SB中點(diǎn),過(guò)C,G,E三點(diǎn)的平面交SA與H點(diǎn),若
SH
SA
,則λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)>0(n∈N*),f(2)=4,并且對(duì)于任意n1,n2∈N*,f(n1+n2)=f(n1)f(n2)成立,猜想f(n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在xOy平面上,將雙曲線的一支
x2
9
-
y2
16
=1(x>0)及其漸近線y=
4
3
x和直線y=0,y=4圍成的封閉圖形記為D,如圖中陰影部分.記D繞y軸旋轉(zhuǎn)一周所得的幾何體為Ω.過(guò)(0,y)(0≤y≤4)作Ω的水平截面,計(jì)算截面面積,利用祖暅原理得出Ω的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<α<
π
2
,tan
α
2
+cot
α
2
=
5
2
,則sin(α-
π
3
)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某養(yǎng)殖戶(hù)有1萬(wàn)只鴨,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.001,設(shè)發(fā)病的鴨的只數(shù)為ξ,則D(ξ)等于(  )
A、1B、9.99
C、10D、19.6

查看答案和解析>>

同步練習(xí)冊(cè)答案