如圖(1)在正方形SG1G2G3中,E、F分別是邊G1G2、G2G3的中點,沿SE、SF及EF把這個正方形折成一個幾何體如圖(2),使G1,G2,G3三點重合于G,下面結論成立的是( 。
A.SG⊥平面EFGB.SD⊥平面EFGC.GF⊥平面SEFD.DG⊥平面SEF

證明:∵在折疊過程中,始終有SG1⊥G1E,SG3⊥G3F,
即SG⊥GE,SG⊥GF,
∴SG⊥平面EFG.
故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,且PA⊥面ABCD,PA=AB,E為PD的中點.
(1)求證:直線PB面ACE
(2)求證:直線AE⊥面PCD
(3)求直線AC與平面PCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求證:BD⊥平面POA;
(Ⅱ)記三棱錐P-ABD體積為V1,四棱錐P-BDEF體積為V2.求當PB取得最小值時的V1:V2值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖在四棱錐P-ABCD中,底面ABCD是∠DAB=60°,且邊長為a的菱形,側面PAD為正三角形,其所在平面垂直于底面ABCD.
(1)若G為AD邊的中點,求證:BG⊥平面PAD;
(2)求二面角A-BC-P的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一個四棱錐P-ABCD的三視圖(正視圖與側視圖為直角三角形,俯視圖是帶有一條對角形的正方形)如下,E是側棱PC上的動點.
(1)求四棱錐P-ABCD的體積;
(2)是否不論點E在何位置都有BD⊥AE,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABC,AD=DC=CB=1,∠ABC═60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若點M在線段EF上運動,設平MAB與平FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐V-ABCD中底面ABCD是正方形,側面VAD是正三角形,平面VAD⊥底面ABCD
(1)證明:AB⊥平面VAD;
(2)求面VAD與面VDB所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖正方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點.
(1)求證:PA平面MBD;
(2)試問:在線段AB上是否存在一點N,使得平面PCN⊥平面PQB?若存在,試指出點N的位置,并證明你的結論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分別是A1B、B1C1的中點.
(Ⅰ)求證:MN⊥平面A1BC;
(Ⅱ)求直線BC1和平面A1BC所成角的大小.

查看答案和解析>>

同步練習冊答案