已知函數(shù)在與時(shí)都取得極值.
(1)求的值及函數(shù)的單調(diào)區(qū)間w.w.w.k.s.5.u.c.o.m
(2)若對,不等式恒成立,求的取值范圍.
(Ⅰ)a=,b=-2,函數(shù)f(x)的遞增區(qū)間是(-¥,-)與(1,+¥).遞減區(qū)間是(-,1)
(Ⅱ)c<-1或c>2.
(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b
由f¢()=,f¢(1)=3+2a+b=0得a=,b=-2
f¢(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:
x | (-¥,-) | - | (-,1) | 1 | (1,+¥) |
f¢(x) | + | 0 | - | 0 | + |
f(x) | | 極大值 | ¯ | 極小值 | |
所以函數(shù)f(x)的遞增區(qū)間是(-¥,-)與(1,+¥).遞減區(qū)間是(-,1)
(2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,當(dāng)x=-時(shí),f(x)=+c
為極大值,而f(2)=2+c,則f(2)=2+c為最大值.
要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c 解得c<-1或c>2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省梅州市高三上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(滿分14分)已知函數(shù)在與時(shí)都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆海南省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本題12分)已知函數(shù)在與時(shí)都取得極值
(1)求的值 (2)若對,不等式恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省永嘉縣普高聯(lián)合體高二第二學(xué)期第一次月考文科數(shù)學(xué)試卷 題型:解答題
已知函數(shù)在與時(shí)都取得極值。
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若對恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河北省高二12月月考數(shù)學(xué)卷doc 題型:解答題
(文)(本小題滿分12分)
已知函數(shù)在與時(shí)都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆河北冀州中學(xué)高二年級下學(xué)期第三次月考題(文) 題型:解答題
已知函數(shù)在與時(shí)都取得極值.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com