精英家教網 > 高中數學 > 題目詳情
設a>0,b>0,稱
2aba+b
為a,b的調和平均數.如圖,C為線段AB上的點,且AC=a,CB=b,O為AB中點,以AB為直徑做半圓.過點C作AB的垂線交半圓于D.連接OD,AD,BD.過點C作OD的垂線,垂足為E.則圖中線段OD的長度是a,b的算術平均數,線段CD的長度是a,b的幾何平均數,那么a,b的調和平均數是線段
DE
DE
的長度.
分析:有題意可知,Rt△DAC∽Rt△BDC,于是可得
CD
BC
=
AC
CD
,即
CD
b
a
CD
⇒CD2=ab;同理可得,由Rt△DCO∽Rt△EDC⇒CD2=DE•OD,從而可得答案.
解答:解:依題意得,Rt△DAC∽Rt△BDC,
CD
BC
=
AC
CD

∵AC=a,CB=b,
CD
b
a
CD
,CD2=ab(射影定理);
同理,Rt△DCO∽Rt△EDC⇒CD2=DE•OD,又OD=
a+b
2

∴DE=
CD2
OD
=
2ab
a+b
,此即為a,b的調和平均數.
故答案為:DE.
點評:本題考查三角形相似及比例的運用,考查射影定理的靈活應用,體現(xiàn)轉化思想與運算能力的考查,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網設a>0,b>0,稱
2aba+b
為a,b的調和平均數.如圖,C為線段AB上的點,且AC=a,CB=b,O為AB中點,以AB為直徑做半圓.過點C作AB的垂線交半圓于D.連接OD,AD,BD.過點C作OD的垂線,垂足為E.則圖中線段OD的長度是a,b的算術平均數,線段
 
的長度是a,b的幾何平均數,線段
 
的長度是a,b的調和平均數.

查看答案和解析>>

科目:高中數學 來源: 題型:

若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”.
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關系(當直線與橢圓的交點個數為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x0,y0)在橢圓C的內部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設
MA
=λ1
AN
,
MB
=λ2
BN
,問λ12是否為定值?說明理由.

查看答案和解析>>

科目:高中數學 來源:2013年湖北省高考數學試卷(文科)(解析版) 題型:解答題

設a>0,b>0,已知函數f(x)=
(Ⅰ)當a≠b時,討論函數f(x)的單調性;
(Ⅱ)當x>0時,稱f(x)為a、b關于x的加權平均數.
(i)判斷f(1),f(),f()是否成等比數列,并證明f()≤f();
(ii)a、b的幾何平均數記為G.稱為a、b的調和平均數,記為H.若H≤f(x)≤G,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設a>0,b>0,稱
2ab
a+b
為a,b的調和平均數.如圖,C為線段AB上的點,且AC=a,CB=b,O為AB中點,以AB為直徑做半圓.過點C作AB的垂線交半圓于D.連接OD,AD,BD.過點C作OD的垂線,垂足為E.則圖中線段OD的長度是a,b的算術平均數,線段CD的長度是a,b的幾何平均數,那么a,b的調和平均數是線段______的長度.
精英家教網

查看答案和解析>>

同步練習冊答案