cosα=-
5
5
,tanβ=
1
3
,π<α<
2
,0<β<
π
2
,求α-β的值.
∵cosα=-
5
5
,π<α<
2

∴sinα=-
1-cos2α
=-
2
5
5

∴tanα=2,又tanβ=
1
3
,
∴tan(α-β)=
tanα-tanβ
1+tanαtanβ
=
2-
1
3
1+
2
3
=1,
π<α<
2
,0<β<
π
2
,
π
2
<α-β<
2
,
α-β=
4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知:橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)過(0,1)點,離心率e=
2
2
;直線l:y=kx+m(m>0)與圓O:x2+y2=1相切,并與橢圓C交于不同的兩點A、B,(O為坐標原點).
Ⅰ.求橢圓C的方程及m與k的關系式m=f(k);
Ⅱ.設
OA
,
OB
=θ,且滿足|
OA|
=
2
|
OB
|=
10
3
,cosθ=
5
5
求直線l的方程;
Ⅲ.在Ⅱ.的條件下,求三角形AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cosα=-
5
5
,tanβ=
1
3
,π<α<
2
,0<β<
π
2
,求α-β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α、β都是銳角,且cosα=
5
5
,sin(α+β)=
3
5
,則cosβ=
2
5
25
2
5
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cosα=-
5
5
,tanβ=
1
3
,π<α<
2
,0<β<
π
2

(1)求sin(α-β)的值.
(2)求α-β.

查看答案和解析>>

同步練習冊答案