已知函數(shù)y=
1-(x-1)2
,x∈[1,2]對于滿足1<x1<x2<2的任意x1,x2,給出下列結論:
①f(x2)-f(x1)>x2-x1 
②x2f(x1)>x1f(x2);
③(x2-x1)[f(x2)-f(x1)]<0
④(x1-x2)[f(x2)-f(x1)]>0
其中正確結論的個數(shù)有( 。
分析:將函數(shù)表達式,化簡得(x-1)2+y2=1,其中x∈[1,2],y≥0.作出它的圖象,得到以(1,0)為圓心,半徑為1的圓的上半圓的右半部分.再根據(jù)直線的斜率公式與函數(shù)的單調性,分別對各項中的結論加以驗證,可得②③為真命題而①④為假命題,即可得到本題答案.
解答:解:令y=
1-(x-1)2
,化簡得(x-1)2+y2=1,其中x∈[1,2],y≥0
得函數(shù)的圖象為以(1,0)為圓心,半徑為1的圓的上半圓的右半部分,如圖所示
對于①,f(x2)-f(x1)>x2-x1等價于
f(x2)-f(x1)
x2-x1
>1
觀察圖象,可得在圖象上任意取兩點A(x1,f(x1)),B(x2,f(x2))
線段AB的斜率為負數(shù),故不等式
f(x2)-f(x1)
x2-x1
>1不成立,得①不正確;
對于②,注意到x2、x1都是正數(shù),
不等式x2f(x1)>x1f(x2)等價于
f(x1)
x1
f(x2)
x2

結合1<x1<x2<2,可得A、B兩點與原點的連線斜率滿足kOA>kOB,②正確
對于③,由于函數(shù)y=
1-(x-1)2
在x∈[1,2]上為減函數(shù),可得當x2<x1時,f(x2)>f(x1).
因此(x2-x1)[f(x2)-f(x1)]<0,可得③正確;
對于④,由于結論與③矛盾,故④不正確
綜上所述,正確的命題為②③
故選:B
點評:本題給出特殊函數(shù),判斷幾個結論正確與否,著重考查了函數(shù)的單調性與圖象的作法、直線的斜率公式等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
1-x
+
x+3
的最大值為M,最小值為m,則
m
M
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
1-x
+
x+3
的最大值為M,最小值為m,則
M
m
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
1-x
+
x+3
的最大值為M,最小值為m,則M2-m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

寫出已知函數(shù)y=
1(x>0)
0(x=0)
-1(x<0).
輸入x的值,求y的值程序.

查看答案和解析>>

同步練習冊答案