函數(shù)f(x)=
ln(x2-x-2)
|x|+x
的定義域為
 
考點:函數(shù)的定義域及其求法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:要使函數(shù)有意義,則需
x2-x-2>0
|x|+x≠0
,解出不等式,即可得到定義域.
解答: 解:要使函數(shù)有意義,則需
x2-x-2>0
|x|+x≠0
即有
x>2或x<-1
x>0

則x>2,
則定義域為(2,+∞).
故答案為:(2,+∞)
點評:本題考查函數(shù)的定義域的求法,注意對數(shù)的真數(shù)大于0,分式分母不為0,考查運算能力吧,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,a1=-12,|a8|=|a17|,則當Sn取最小值時,n等于(  )
A、12B、13
C、11或12D、12或13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中表示同一函數(shù)的是( 。
A、f(x)=x與g(x)=(
x
2
B、f(x)=|x|與g(x)=
3x3
C、f(x)=2lnx與g(x)=lnx2
D、f(x)=
x2-1
x-1
與g(x)=x+1(x≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={-1,0,1,2,3},P={-1,2,3},則∁UP=( 。
A、{0,1}
B、{-1,0,1}
C、{0,1,2}
D、{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合 A={1,2},集合B滿足A∪B=A,則集合B有( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
), n∈N*

(1)求數(shù)列{an}的通項公式;
(2)令Tn=a1-a2+a3-a4+…+a2n-1-a2n,求Tn
(3)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+…+bn,Sn
m-2005
2
對一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(4)=-3,且對任意x∈R總有f′(x)<3,則不等式f(x)<3x-15的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式an=2n-9,(n∈N+) 則|a1|+|a2|+|a3|+…+|a10|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市出租車收費標準如下:起步價為8元,起步里程為3km(不超過3km按起步價付費);超過3km但不超過8km時,超過部分按每千米2.15元收費;超過8km時,超過部分按每千米2.85元收費,另每次乘坐需付燃油附加費1元.現(xiàn)某人乘坐一次出租車付費22.6元,則此次出租車駛了多少km?

查看答案和解析>>

同步練習(xí)冊答案