分析 由約束條件作出可行域,由可行域面積列式求得k值,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y+2≥0}\\{x≤k}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x+y=0}\\{x-y+2=0}\end{array}\right.$,解得C(-1,1),
聯(lián)立$\left\{\begin{array}{l}{x=k}\\{x+y=0}\end{array}\right.$,解得A(k,-k),
聯(lián)立$\left\{\begin{array}{l}{x=k}\\{x-y+2=0}\end{array}\right.$,解得B(k,k+2),
由${S}_{△ABC}=\frac{1}{2}$(2k+2)(k+1)=16,解得:k=3;
∴A(3,-3),
由z=2x-y,得y=2x-z,
由圖可知,當(dāng)直線過點(diǎn)A時(shí),直線在y軸上的截距最小,z有最大值為9.
故答案為:3,9.
點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最大值為$\frac{14}{5}$ | B. | 有最小值為$\frac{14}{5}$ | C. | 沒有最小值 | D. | 有最大值為3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α⊥β,a⊥b,且b與l不垂直,則a⊥l | B. | 若α⊥β,b⊥l,則a⊥b | ||
C. | 若a⊥b,b⊥l,且a與l不平行,則α⊥β | D. | 若a⊥l,b⊥l,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com