【題目】如圖,在五面體中,已知平面,,,,.
(1)求證:;
(2)求三棱錐的體積.
【答案】(1)詳見解析,(2)
【解析】
試題分析:(1)證明線線平行,一般思路為利用線面平行的性質(zhì)定理與判定定理進行轉(zhuǎn)化. 因為,平面,平面,所以平面,又平面,平面平面,所以.(2)求三棱錐的體積,關(guān)鍵是找尋高.可由面面垂直性質(zhì)定理探求,因為平面,所以有面平面,則作就可得平面.證明平面過程也可從線線垂直證線面垂直.確定是三棱錐的高之后,可利用三棱錐的體積公式.
試題解析:
(1)因為,平面,平面,
所以平面, 3分
又平面,平面平面,
所以. 6分
(2)在平面內(nèi)作于點,
因為平面,平面,所以,
又,平面,,
所以平面,
所以是三棱錐的高. 9分
在直角三角形中,,,所以,
因為平面,平面,所以,
又由(1)知,,且,所以,所以, 12分
所以三棱錐的體積. 14分
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)分別為橢圓的左右兩個焦點.
(1)若橢圓上的點到兩點的距離之和等于4,寫出橢圓的方程和焦點坐標;
(2)設(shè)點是(1)中所得橢圓上的動點,求線段的中點的軌跡方程;
(3)已知橢圓具有性質(zhì):如果是橢圓上關(guān)于原點對稱的兩個點,點是橢圓上任意一點,當直線的斜率都存在,并記為時,那么與之積是與點位置無關(guān)的定值,請給予證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某設(shè)備的使用年數(shù)x與所支出的維修總費用y的統(tǒng)計數(shù)據(jù)如下表:
使用年數(shù)x(單位:年) | 2 | 3 | 4 | 5 | 6 |
維修費用y(單位:萬元) | 1.5 | 4.5 | 5.5 | 6.5 | 7.0 |
根據(jù)上標可得回歸直線方程為 =1.3x+ ,若該設(shè)備維修總費用超過12萬元,據(jù)此模型預測該設(shè)備最多可使用年.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列說法:①若,,則;②若2=,分別表示的面積,則;③兩個非零向量,若||=||+||,則與共線且反向;④若,則存在唯一實數(shù)使得,其中正確的說法個數(shù)為()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓方程為,它的一個頂點為,離心率.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于, 兩點,坐標原點到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為80,則判斷框內(nèi)應(yīng)填入( )
A.n≤8?
B.n>8?
C.n≤7?
D.n>7?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的函數(shù),其導函數(shù).
(1)如果函數(shù)在x=1處有極值試確定b、c的值;
(2)設(shè)當時,函數(shù)圖象上任一點P處的切線斜率為k,若,求實數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com