15.函數(shù)f(x)=cos($\frac{1}{2}$x+$\frac{π}{6}$)的圖象向右平移φ(φ>0)個(gè)單位,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則φ的最小值為$\frac{π}{3}$.

分析 函數(shù)f(x)=cos($\frac{1}{2}$x+$\frac{π}{6}$)的圖象向右平移φ個(gè)單位所得圖象關(guān)于y軸對(duì)稱,可得出函數(shù)的形式變?yōu)榱藋=cos($\frac{1}{2}x$$-\frac{1}{2}$φ+$\frac{π}{6}$),k∈z,由余弦函數(shù)的對(duì)稱性此得出φ的表達(dá)式判斷出φ的最小正值得出答案.

解答 解:∵函數(shù)f(x)=cos($\frac{1}{2}$x+$\frac{π}{6}$)的圖象向右平移φ個(gè)單位,
所得圖象對(duì)應(yīng)的函數(shù)解析式為:y=cos($\frac{1}{2}x$$-\frac{1}{2}$φ+$\frac{π}{6}$)
由于其圖象關(guān)于y軸對(duì)稱,
∴$-\frac{1}{2}$φ+$\frac{π}{6}$=kπ,k∈z,
∴φ=$\frac{π}{3}$-2kπ,k∈z,
由φ>0,可得:當(dāng)k=0時(shí),φ的最小正值是$\frac{π}{3}$.
故答案為:$\frac{π}{3}$

點(diǎn)評(píng) 本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,解題的關(guān)鍵是熟練掌握、理解三角函數(shù)圖象的變換規(guī)律,由這些規(guī)律得到關(guān)于φ的方程,再根據(jù)所得出的方程判斷出φ的最小正值,本題考查圖象變換,題型新穎,題后注意總結(jié)此類題的做題規(guī)律,在近幾年的高考中,此類題出現(xiàn)頻率較高,應(yīng)多加重視.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某研究機(jī)構(gòu)對(duì)中學(xué)生記憶能力x和識(shí)圖能力y進(jìn)行統(tǒng)計(jì)分析,得到如下數(shù)據(jù):
記憶能力x46810
識(shí)圖能力y3﹡﹡﹡68
由于某些原因,識(shí)圖能力的一個(gè)數(shù)據(jù)丟失,但已知識(shí)圖能力樣本平均值是5.5.
(Ⅰ)求丟失的數(shù)據(jù);
(Ⅱ)經(jīng)過(guò)分析,知道記憶能力x和識(shí)圖能力y之間具有線性相關(guān)關(guān)系,請(qǐng)用最小二乘法求出y關(guān)于x的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(III)若某一學(xué)生記憶能力值為12,請(qǐng)你預(yù)測(cè)他的識(shí)圖能力值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知拋物線C:y2=4x的焦點(diǎn)為F,P(x0,y0)是C上一點(diǎn),且$|PF|=\frac{3}{2}{x_0}$,則x0的值為( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在等比數(shù)列{an}中,a1=3,a1+a2+a3=9,則a4+a5+a6等于( 。
A.9B.72C.9或72D.9或-72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,$\overrightarrow{i}$,$\overrightarrow{j}$分別是與x軸、y軸方向相同的單位向量,已知$\overrightarrow{OA}$=$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow{OB}$=3$\overrightarrow{i}$+4$\overrightarrow{j}$,$\overrightarrow{OC}$=2t$\overrightarrow{i}$+(t+5)$\overrightarrow{j}$,若$\overrightarrow{AB}$與$\overrightarrow{AC}$共線,則實(shí)數(shù)t的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.拋物線y2=4x上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知命題p:?x∈R,x2+1≥m;命題q:方程$\frac{x^2}{m-2}+\frac{y^2}{m+2}=1$表示雙曲線.
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=|ax-x2|+2b(a,b∈R).
(1)當(dāng)a=-2,b=-$\frac{15}{2}$時(shí),解方程f(2x)=0;
(2)當(dāng)b=0時(shí),若不等式f(x)≤2x在x∈[0,2]上恒成立,求實(shí)數(shù)a的取值范圍;
(3)若a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是兩個(gè)相互垂直的單位向量,且$\overrightarrow a=-2\overrightarrow{e_1}-\overrightarrow{e_2}$,$\overrightarrow b=\overrightarrow{e_1}-λ\overrightarrow{e_2}$.
(Ⅰ)若$\overrightarrow a∥\overrightarrow b$,求λ的值;
(Ⅱ)若$\overrightarrow a⊥\overrightarrow b$,求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案