如圖,已知OA=6,AB=3,AB⊥AO,∠xOA=θ,θ∈(0,
π
2
)

(1)用θ表示點B的縱坐標y;
(2)求y的最大值.
精英家教網(wǎng)
(1)分別過點A,B作x軸的垂線,垂足分別為C,D,過A作AE⊥BD與E,
則∠ABE=∠xOA=θ,且有y=BE+ED=BE+AC=3cosθ+6sinθ,其中θ∈(0,
π
2
)
…..(8分)
(2)由(1)知y=6sinθ+3cosθ=3
5
sin(θ+?)
,其中?為銳角且tan?=
1
2

故y有最大值為3
5
…..(14分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知單位向量
OA
、
OB
與向量
OP
共面,且夾角分別
π
6
3
,設(shè)
DC
=
OA
-
OB
,則向量
DC
OP
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知P是單位圓(圓心在坐標原點)上一點,∠xOP=
π
3
,作PM⊥x軸于M,PN⊥y軸于N.
(1)比較|OM|與
π
6
的大小,并說明理由;
(2)∠AOB的兩邊交矩形OMPN的邊于A,B兩點,且∠AOB=
π
4
,求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知OA=6,AB=3,AB⊥AO,∠xOA=θ,θ∈(0,
π2
)

(1)用θ表示點B的縱坐標y;
(2)求y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知|
OA
|=3
|
OB
|=1
,
OA
OB
=0
,∠AOP=
π
6
,若
OP
=t
OA
+
OB
,則實數(shù)t等于( 。

查看答案和解析>>

同步練習冊答案