4.函數(shù)y=cos2(x+$\frac{π}{4}$)-cos2(x-$\frac{π}{4}$)是(  )
A.周期為2π的偶函數(shù)B.周期為2π的奇函數(shù)
C.周期為π的偶函數(shù)D.周期為π的奇函數(shù)

分析 本題運(yùn)用了三角函數(shù)中的湊角及誘導(dǎo)公式進(jìn)行了化簡.

解答 解:原式=$co{s}^{2}(x+\frac{π}{4})-si{n}^{2}(x+\frac{π}{4})=cos(2x+\frac{π}{2})$=-sin2x,
顯然周期為π的奇函數(shù).
故選D

點(diǎn)評(píng) 本題考查了余弦的二倍角公式及三角函數(shù)周期性和奇偶性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(3x+2)=9x2+3x-1,求f(x)( 。
A.f(x)=3x2-x-1B.f(x)=81x2+127x+53C.f(x)=x2-3x+1D.f(x)=6x2+2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若(9x-$\frac{1}{3\sqrt{x}}$)n(n∈N+)的展開式中第3項(xiàng)的二項(xiàng)式系數(shù)為36,則其展開式中的常數(shù)項(xiàng)為84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=asinxcosx-sin2x+$\frac{1}{2}$的一條對(duì)稱軸方程為x=$\frac{π}{6}$,則函數(shù)f(x)的最大值為( 。
A.1B.±1C.$\sqrt{2}$D.$±\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.復(fù)數(shù)2-mi是$\frac{ni}{1+i}$(m,n均為實(shí)數(shù))的共軛復(fù)數(shù),則m+n的值為(  )
A.-6B.-3C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|y=$\sqrt{3-2x-{x^2}}$},B={x|x2-2x+1-m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,A⊆B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,則輸出的n的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面α和平面β的法向量分別為$\overrightarrow{m}$=(3,1,-5),$\overrightarrow{n}$=(-6,-2,10),則(  )
A.α⊥βB.α∥β
C.α與β相交但不垂直D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=-2sin(2x+$\frac{π}{6}$),則f(0)=-1,最小正周期是π,f (x)的最大值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案