【題目】過(guò)點(diǎn)P(-4,0)的動(dòng)直線(xiàn)l與拋物線(xiàn)相交于D、E兩點(diǎn),已知當(dāng)l的斜率為時(shí),.
(1)求拋物線(xiàn)C的方程;
(2)設(shè)的中垂線(xiàn)在軸上的截距為,求的取值范圍.
【答案】;
【解析】
根據(jù)題意,求出直線(xiàn)方程并與拋物線(xiàn)方程聯(lián)立,利用韋達(dá)定理,結(jié)合,即可求出拋物線(xiàn)C的方程;
設(shè),的中點(diǎn)為,把直線(xiàn)l方程與拋物線(xiàn)方程聯(lián)立,利用判別式求出的取值范圍,利用韋達(dá)定理求出,進(jìn)而求出的中垂線(xiàn)方程,即可求得在軸上的截距的表達(dá)式,然后根據(jù)的取值范圍求解即可.
由題意可知,直線(xiàn)l的方程為,
與拋物線(xiàn)方程方程聯(lián)立可得,
,
設(shè),由韋達(dá)定理可得,
,
因?yàn)?/span>,,
所以,解得,
所以?huà)佄锞(xiàn)C的方程為;
設(shè),的中點(diǎn)為,
由,消去可得,
所以判別式,解得或,
由韋達(dá)定理可得,,
所以的中垂線(xiàn)方程為,
令則,
因?yàn)?/span>或,所以即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.數(shù)列前項(xiàng)和為,且滿(mǎn)足
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列前項(xiàng)和;
(3)在數(shù)列中,是否存在連續(xù)的三項(xiàng),按原來(lái)的順序成等差數(shù)列?若存在,求出所有滿(mǎn)足條件的正整數(shù)的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年10月份鄭州市進(jìn)行了高三學(xué)生的體育學(xué)業(yè)水平測(cè)試,為了考察高中學(xué)生的身體素質(zhì)比情況,現(xiàn)抽取了某校1000名(男生800名,女生200名)學(xué)生的測(cè)試成績(jī),根據(jù)性別按分層抽樣的方法抽取100名進(jìn)行分析,得到如下統(tǒng)計(jì)圖表:
男生測(cè)試情況:
抽樣情況 | 病殘免試 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
人數(shù) | 5 | 10 | 15 | 47 |
女生測(cè)試情況
抽樣情況 | 病殘免試 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
人數(shù) | 2 | 3 | 10 | 2 |
(1)現(xiàn)從抽取的1000名且測(cè)試等級(jí)為“優(yōu)秀”的學(xué)生中隨機(jī)選出兩名學(xué)生,求選出的這兩名學(xué)生恰好是一男一女的概率;
(2)若測(cè)試等級(jí)為“良好”或“優(yōu)秀”的學(xué)生為“體育達(dá)人”,其它等級(jí)的學(xué)生(含病殘免試)為“非體育達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為“是否為體育達(dá)人”與性別有關(guān)?
男性 | 女性 | 總計(jì) | |
體育達(dá)人 | |||
非體育達(dá)人 | |||
總計(jì) |
臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:( ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年1月31日晚上月全食的過(guò)程分為初虧、食既、食甚、生光、復(fù)圓五個(gè)階段,月食的初虧發(fā)生在19時(shí)48分,20時(shí)51分食既,21時(shí)29分食甚,22時(shí)07分生光,23時(shí)11分復(fù)圓.月全食伴隨有藍(lán)月亮和紅月亮,全食階段的“紅月亮”在食既時(shí)刻開(kāi)始,生光時(shí)刻結(jié)束.小明準(zhǔn)備在19:55至21:56之間的某個(gè)時(shí)刻欣賞月全食,則他等待“紅月亮”的時(shí)間不超過(guò)30分鐘的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(I)若,函數(shù)的極大值為,求實(shí)數(shù)的值;
(Ⅱ)若對(duì)任意的 在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為認(rèn)真貫徹落實(shí)黨中央國(guó)務(wù)院決策部署,堅(jiān)持“房子是用來(lái)住的,不是用來(lái)炒的”定位,堅(jiān)持調(diào)控政策的連續(xù)性和穩(wěn)定性,進(jìn)一步穩(wěn)定某省市商品住房市場(chǎng),該市人民政府辦公廳出臺(tái)了相關(guān)文件來(lái)控制房?jī)r(jià),并取得了一定效果,下表是2019年2月至6月以來(lái)該市某城區(qū)的房?jī)r(jià)均值數(shù)據(jù):
(月份) | 2 | 3 | 4 | 5 | 6 |
(房?jī)r(jià)均價(jià):千元/平方米) | 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若變量、具有線(xiàn)性相關(guān)關(guān)系,求房?jī)r(jià)均價(jià)(千元/平方米)關(guān)于月份的線(xiàn)性回歸方程;
(2)根據(jù)線(xiàn)性回歸方程預(yù)測(cè)該市某城區(qū)7月份的房?jī)r(jià).
(參考公式:用最小二乘法求線(xiàn)性回歸方程的系數(shù)公式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國(guó)隊(duì)與韓國(guó)隊(duì)相遇,中國(guó)隊(duì)男子選手A,B,C,D,E依次出場(chǎng)比賽,在以往對(duì)戰(zhàn)韓國(guó)選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會(huì)釆用5局3勝制,先贏(yíng)3局者獲得勝利.
(1)在決賽中,中國(guó)隊(duì)以3∶1獲勝的概率是多少?
(2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),,下列說(shuō)法正確的是( )
A.當(dāng)時(shí),在處的切線(xiàn)方程為
B.當(dāng)時(shí),存在唯一極小值點(diǎn),且
C.對(duì)任意,在上均存在零點(diǎn)
D.存在,在上有且只有一個(gè)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱(chēng)為塹堵(qian du);陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個(gè)面均為直角三角形的四面體.如圖在塹堵中,.
(1)求證:四棱錐為陽(yáng)馬;
(2)若,當(dāng)鱉膈體積最大時(shí),求銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com