如圖,圓O的兩弦AB和CD交于點(diǎn)E,EF∥CB,EF交AD的延長線于點(diǎn)F.求證:△DEF∽△EAF.
考點(diǎn):相似三角形的判定
專題:立體幾何
分析:利用平行線的性質(zhì)、相似三角形的判定定理即可得出.
解答: 證明:∵EF∥CB,
∴∠BCD=∠FED,
又∠BAD與∠BCD是
BD
所對應(yīng)的圓周角,
∴∠BAD=∠BCD
∴∠BAD=∠FED,
又∠EFD=∠EFD,
∴△DEF∽△EAF.
點(diǎn)評:本題考查了平行線的性質(zhì)、相似三角形的判定定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
1+i
1-i
,則
1+2i
z2-1
的共軛復(fù)數(shù)是(  )
A、-
1
2
-i
B、-
1
2
+i
C、
1
2
-i
D、
1
2
+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}無窮等比數(shù)列,則下列數(shù)列可能不是等比數(shù)列的是( 。
A、{a2n}
B、{a2n-1}
C、{an•an+1}
D、{an+an+1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖三棱柱ABC-A1B1C1的底面是邊長為3的正三角形,側(cè)棱AA1垂直于底面ABC1;AA1=
3
3
2
,D是CB延長線上一點(diǎn),且BD=BC,
(1)求證:直線BC1∥平面AB1D
(2)若在幾何體A1B1C1-ACD內(nèi)隨機(jī)取一點(diǎn),求該點(diǎn)落在三棱錐C1-ABB1內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的直徑,C、F是⊙O上的點(diǎn),OC垂直于直徑AB,過F點(diǎn)作⊙O的切線交AB的延長線于D.連結(jié)CF交AB于E點(diǎn).
(Ⅰ)求證:DE2=DB•DA;
(Ⅱ)若⊙O的半徑為4
3
,OB=
3
OE,求EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x|-|x-3|.
(Ⅰ)解關(guān)于x的不等式f(x)≥1;
(Ⅱ)若存在x0∈R,使得關(guān)于x的不等式m≤f(x0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某化工企業(yè)生產(chǎn)某種產(chǎn)品,生產(chǎn)每件產(chǎn)品的成本為3元,根據(jù)市場調(diào)查,預(yù)計(jì)每件產(chǎn)品的出廠價(jià)為x元(7≤x≤10)時(shí),一年的產(chǎn)量為(11-x)2萬件;若該企業(yè)所生產(chǎn)的產(chǎn)品能全部銷售,則稱該企業(yè)正常生產(chǎn);但為了保護(hù)環(huán)境,用于污染治理的費(fèi)用與產(chǎn)量成正比,比例系數(shù)為常數(shù)a(1≤a≤3).
(Ⅰ)求該企業(yè)正常生產(chǎn)一年的利潤L(x)與出廠價(jià)x的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的出廠價(jià)定為多少元時(shí),企業(yè)一年的利潤最大,并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1|+|2x+1|
(Ⅰ)解不等式f(x)<3;
(Ⅱ)若不等式f(x)≤|
1
2
a-1|解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-2x+4在點(diǎn)(1,3)處的切線方程
 

查看答案和解析>>

同步練習(xí)冊答案