已知f'(x)是f(x)的導(dǎo)數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個(gè)結(jié)論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設(shè)f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導(dǎo)函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結(jié)論正確的是    (多填、少填、錯(cuò)填均得零分).
【答案】分析:根據(jù)導(dǎo)數(shù)的運(yùn)算法則逐個(gè)命題判斷即可得到結(jié)論.
解答:解:①中,由f(x)=xn,得f(5)(1)=5×4×3×2×1=120,故①正確;
②中,f(1)(x)=f′(x)=-sinx,f(2)(x)=-cosx,f(3)(x)=sinx,f(4)(x)=cosx=f(x),故②正確;
③中,由于f(x)=ex,所以f(1)(x)=ex,f(2)(x)=ex,…,f(n)(x)=ex=f(x),故③正確;
④中,令f(x)=x,g(x)=1,則h(x)=x,
而h(1)(x)=1,f(1)(x)•g(1)(x)=0,所以h(1)(x)≠f(1)(x)g(1)(x),故④錯(cuò)誤;
故答案為:①②③.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)算性質(zhì),考查學(xué)生的運(yùn)算能力,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x+
π
2
)
是偶函數(shù),給出下列四個(gè)結(jié)論:
①f(x)是周期函數(shù);
②x=π是f(x)圖象的一條對(duì)稱軸;
③(-π,0)是f(x)圖象的一個(gè)對(duì)稱中心;
④當(dāng)x=
π
2
時(shí),f(x)一定取最大值.
其中正確的結(jié)論的代號(hào)是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f′(x)是f(x)的導(dǎo)函數(shù),在區(qū)間[0,+∞)上f′(x)>0,且偶函數(shù)f(x)滿足f(2x-1)<f(
13
)
,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f′(x)是f(x)的導(dǎo)函數(shù),在區(qū)間[0,+∞)上f′(x)>0,且偶函數(shù)f(x)滿足f(2x-1)<f(
1
3
)
,則x的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的可導(dǎo)函數(shù),對(duì)任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,則f(2)與f(e)•ln2的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x)是定義在R上的可導(dǎo)函數(shù),對(duì)任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,則f(2)與f(e)•ln2的大小關(guān)系是( 。
A.f(2)>f(e)•ln2B.f(2)=f(e)•ln2C.f(2)<f(e)•ln2D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案