已知y=Asin(ωx+φ),(A>0,ω>0)的圖象過點(diǎn)P(,0)圖象上與點(diǎn)P最近的一個(gè)頂點(diǎn)是Q(,5).
(1)求函數(shù)的解析式;
(2)指出函數(shù)的增區(qū)間;
(3)求使y≤0的x的取值范圍.
【答案】分析:(1)利用題意在求出A,通過周期求出ω,利用函數(shù)經(jīng)過的特殊點(diǎn)求出φ,即可求函數(shù)的解析式;
(2)通過正弦函數(shù)的單調(diào)增區(qū)間直接函數(shù)的增區(qū)間;
(3)利用正弦函數(shù)的值域,求使y≤0的x的取值范圍.
解答:解:(1)由函數(shù)圖象過一個(gè)頂點(diǎn)是(,5)知A=5.
圖象過點(diǎn)P(,0)圖象上與點(diǎn)P最近的一個(gè)頂點(diǎn)是Q(,5).
所以=-=,∴T=π,ω=2.
將Q(,5)代入y=5sin(2x+φ)得φ=-
∴函數(shù)解析式為y=5sin(2x-).                    (4分)
(2)由2kπ-≤2x-≤2kπ+
得增區(qū)間為[kπ-,kπ+].k∈Z. 
 函數(shù)的增區(qū)間:[kπ-,kπ+].k∈Z.        (8分)
(3)因?yàn)閥≤0
所以5sin(2x-)≤0     
可得 2kπ+π≤2x-≤2kπ+2π.
x∈[kπ+,kπ+π].k∈Z.                         (12分)
點(diǎn)評(píng):本題考查三角函數(shù)的解析式的求法,三角函數(shù)的基本性質(zhì)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知y=Asin(ωx+φ),(A>0,ω>0)的圖象過點(diǎn)P(
π
12
,0)圖象上與點(diǎn)P最近的一個(gè)頂點(diǎn)是Q(
π
3
,5).
(1)求函數(shù)的解析式;
(2)指出函數(shù)的增區(qū)間;
(3)求使y≤0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=Asin(ωx+φ)(A>0,ω>0)的周期為1,最大值與最小值的差是3,且函數(shù)的圖象過點(diǎn)(
1
8
3
4
)
,則函數(shù)表達(dá)式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知y=Asin(ωx+?)的最大值為1,在區(qū)間[
π
6
,
3
]
上,函數(shù)值從1減小到-1,函數(shù)圖象(如圖)與y軸的交點(diǎn)P坐標(biāo)是(  )
A、(0,
1
2
)
B、(0,
2
2
)
C、(0,
3
2
)
D、以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的圖象過點(diǎn)P(
π
12
,0)圖象上與點(diǎn)P最近的一個(gè)頂點(diǎn)是Q(
π
3
,5).
(1)求函數(shù)的解析式;
(2)求使y≤0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=Asin(ωx+φ),(A>0,ω>0)的圖象過點(diǎn)P(
π
12
,0),圖象上與點(diǎn)P最近的一個(gè)頂點(diǎn)是Q(
π
3
,5).
(1)求函數(shù)的解析式;并用“五點(diǎn)法”畫簡圖;
(2)指出函數(shù)的增區(qū)間;
(3)求使y≤0的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案