16.已知集合A={x|a-1<x<a+1},B={x|0<x<3}.
(1)若a=0,求A∩B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

分析 (1)若a=0,則集合A={x|-1<x<1},A∩B可求;
(2)若A⊆B,則$\left\{\begin{array}{l}{a-1≥0}\\{a-1≤3}\end{array}\right.$,解不等式組則實(shí)數(shù)a的取值范圍可求.

解答 解:(1)若a=0,集合A={x|a-1<x<a+1}={x|-1<x<1},B={x|0<x<3}.
則A∩B={x|-1<x<1}∩{x|0<x<3}={x|0<x<1};
(2)若A⊆B,則$\left\{\begin{array}{l}{a-1≥0}\\{a-1≤3}\end{array}\right.$,即1≤a≤2,
∴實(shí)數(shù)a的取值范圍是1≤a≤2.

點(diǎn)評(píng) 本題考查了集合的包含關(guān)系判斷及應(yīng)用,考查了交集及其運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知數(shù)組(x1,y1),(x2,y2),…,(xn,yn)的線(xiàn)性回歸方程是$\hat y=bx+a$,則“x0=$\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$,且y0=$\frac{{{y_1}+{y_2}+…+{y_n}}}{n}$”是“(x0,y0)滿(mǎn)足方程$\hat y=bx+a$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若函數(shù)f(x)=|x|+$\sqrt{a-{x^2}}-\sqrt{2}$(a>0)沒(méi)有零點(diǎn),則a的取值范圍是( 。
A.$(\sqrt{2},+∞)$B.(2,+∞)C.$(0,1)∪(\sqrt{2},+∞)$D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)D為△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{BC}$=3$\overrightarrow{CD}$,則(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知扇形的圓心角為$\frac{π}{3}$,半徑為2,則該扇形的面積為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知向量$\vec a=({-1,3})$,$\vec b=({x,-1})$,且$\vec a∥\vec b$,則x的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ)( A>0,ω>0,$|φ|<\frac{π}{2}$),若函數(shù)y=f(x)的圖象與x軸的任意兩個(gè)相鄰交點(diǎn)間的距離為$\frac{π}{2}$,當(dāng)$x=\frac{π}{6}$時(shí),函數(shù)y=f(x)取得最大值3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)減區(qū)間;
(3)若$x∈[{-\frac{π}{6},\frac{π}{3}}]$,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.sinx+siny=$\frac{1}{3}$,cosx-cosy=$\frac{1}{5}$,求sin(x-y)與cos(x+y)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{(x+2)^{2}+{x}^{5}}{{x}^{2}+4}$的最大值為M,最小值為n,則M+m的值是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案