已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足
a
2
n
=S2n-1,n∈N*
.?dāng)?shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和.
(I)求a1,d和Tn;
(II)若對任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍.
分析:(I)在
a
2
n
=S2n-1
中,令n=1,n=2,得
a12=a1
(a1+d)2=3a1+3d
,解得an=2n-1,由足bn=
1
anan+1
=
1
2
(
1
2n-1
-
1
2n+1
)
,能求出a1,d和Tn
(II)當(dāng)n為偶數(shù)時,要使不等式λTn<n+8•(-1)n恒成立,即需不等式λ<
(n+8)(2n+1)
n
=2n+
8
n
+17
恒成立.由此解得λ<25;當(dāng)n為奇數(shù)時,要使不等式λTn<n+8•(-1)n恒成立,需不等式λ<
(n-8)(2n+1)
n
=2n-
8
n
-15
恒成立,解得λ<-21.由此能夠求出λ的取值范圍.
解答:解:(I)在
a
2
n
=S2n-1
中,令n=1,n=2,
a12=S1
a22=S3
,即
a12=a1
(a1+d)2=3a1+3d

解得a1=1,d=2,(3分)
an=2n-1.
bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
),
Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
n
2n+1
.…(6分)

(II)(1)當(dāng)n為偶數(shù)時,要使不等式λTn<n+8•(-1)n恒成立,
即需不等式λ<
(n+8)(2n+1)
n
=2n+
8
n
+17
恒成立.
2n+
8
n
≥8
,等號在n=2時取得.
∴此時λ需滿足λ<25.(8分)
(2)當(dāng)n為奇數(shù)時,要使不等式λTn<n+8•(-1)n恒成立,
即需不等式λ<
(n-8)(2n+1)
n
=2n-
8
n
-15
恒成立.
2n-
8
n
是隨n的增大而增大,
n=1時2n-
8
n
取得最小值-6.
∴此時λ需滿足λ<-21.(10分)
綜合(1)(2)可得λ<-21
∴λ的取值范圍是{λ|λ<-21}.(12分)
點(diǎn)評:本題考查等差數(shù)列的首項(xiàng)、公差的求法,考查數(shù)列前n項(xiàng)和的求法,考查實(shí)數(shù)的取值范圍的求法,考查數(shù)列與不等式的綜合運(yùn)用.解題時要認(rèn)真審題,注意迭代法、裂項(xiàng)求和法、等價(jià)轉(zhuǎn)化法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若一個數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個三角形數(shù)表,當(dāng)x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南匯區(qū)二模)已知數(shù)列{an}中,若2an=an-1+an+1(n∈N*,n≥2),則下列各不等式中一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若一個數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足數(shù)學(xué)公式(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個三角形數(shù)表,當(dāng)x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

若一個數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個三角形數(shù)表,當(dāng)x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

若一個數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個三角形數(shù)表,當(dāng)x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

同步練習(xí)冊答案