已知函數(shù)y=ax3+bx2,當(dāng)x=1時(shí),有極大值3
(1)求函數(shù)的解析式
(2)寫出它的單調(diào)區(qū)間
(3)求此函數(shù)在[-2,2]上的最大值和最小值.
分析:(1)求出y′,由x=1時(shí),函數(shù)有極大值3,所以代入y和y′=0中得到兩個(gè)關(guān)于a、b的方程,求出a、b即可;
(2)令y′>0解出得到函數(shù)的單調(diào)增區(qū)間,令y′<0得到函數(shù)的單調(diào)減區(qū)間;
(3)由(2)求出函數(shù)的極值,再計(jì)算出函數(shù)在x=-2,x=2處的函數(shù)值,進(jìn)行比較,其中最大者即為最大值,最小者即為最小值;
解答:解:(1)y′=3ax2+2bx,當(dāng)x=1時(shí),y′|x=1=3a+2b=0,y|x=1=a+b=3,
3a+2b=0
a+b=3
,解得a=-6,b=9,
所以函數(shù)解析式為:y=-6x3+9x2
(2)由(1)知y=-6x3+9x2,
y′=-18x2+18x,令y′>0,得0<x<1;令y′<0,得x>1或x<0,
所以函數(shù)的單調(diào)遞增區(qū)間為(0,1),函數(shù)的單調(diào)遞減區(qū)間為(-∞,0),(1,+∞).
(3)由(2)知:當(dāng)x=0時(shí)函數(shù)取得極小值為0,當(dāng)x=1時(shí)函數(shù)取得極大值3,
又y|x=-2=84,y|x=2=-12.
故函數(shù)在[-2,2]上的最大值為84,最小值為-12.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的極值及函數(shù)在閉區(qū)間上的最值問題,屬中檔題,準(zhǔn)確求導(dǎo),熟練運(yùn)算是解決該類問題的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax3+bx2,當(dāng)x=1時(shí),有極大值3.
(1)求a,b的值;
(2)求函數(shù)y的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax3+bx2+6x+1的遞增區(qū)間為(-2,3),則a,b的值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax3+bx2,當(dāng)x=1時(shí),有極大值3;則2a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax3-15x2+36x-24在x=3處有極值,則函數(shù)的遞減區(qū)間為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案