已知O是△ABC內(nèi)部一點(diǎn),++=,=2且∠BAC=60°,則△OBC的面積為( )
A.
B.
C.
D.
【答案】分析:據(jù)向量的平行四邊形法則判斷出點(diǎn)O為三角形的重心,據(jù)重心的性質(zhì)得出△OBC的面積與△ABC面積的關(guān)系,利用向量的數(shù)量積公式,求出三角形兩鄰邊的乘積,據(jù)三角形的面積公式求出面積.
解答:解:∵

∴O為三角形的重心
∴△OBC的面積為△ABC面積的


∵∠BAC=60°

△ABC面積為 =
∴△OBC的面積為
故選A.
點(diǎn)評(píng):此題是個(gè)中檔題.本題考查向量的平行四邊形法則;向量的數(shù)量積公式及三角形的面積公式,特別注意已知O是△ABC內(nèi)部一點(diǎn),++=?O為三角形△ABC的重心,以及靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC內(nèi)部一點(diǎn),
OA
+
OB
+
OC
=
0
AB
AC
=2
3
,且∠BAC=30°,則△OBA的面積為(  )
A、
1
3
B、
1
2
C、
3
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC內(nèi)部一點(diǎn),
OA
+
OB
+
OC
=
0
AB
AC
=2且∠BAC=60°,則△OBC的面積為( 。
A、
3
3
B、
1
2
C、
3
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC內(nèi)部一點(diǎn),
OA
+
OB
+
OC
=0,
AB
AC
=2且∠ABC=60°,則△OBC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC內(nèi)部一點(diǎn),
OA
+
OB
+
OC
=0
AB
AC
=2
,且∠BAC=60°,則|
AB
||
AC
|
=
 
;△OBC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年?yáng)|北育才、大連育明高三第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知O是△ABC內(nèi)部一點(diǎn),++==2,且∠BAC=30°,則△OBA的面積為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案