已知四棱錐的底面是等腰梯形,且
分別是的中點.
(1)求證:;
(2)求二面角的余弦值.
(1)利用線面垂直證明線線垂直;(2)
【解析】
試題分析:(1)分別是的中點.
是的中位線, 2分
由已知可知- 3分
-4分
-5 分
-6分
(2)以所在直線為x軸,y軸,z軸,建系
由題設(shè),, 7分
8分
設(shè)平面的法向量為
可得, --10分
平面的法向量為
設(shè)二面角為,
--12分
考點:本題考查了空間中的線面關(guān)系
點評:高考中常考查空間中平行關(guān)系與垂直關(guān)系的證明以及幾何體體積的計算,這是高考的重點內(nèi)容.證明的關(guān)鍵是熟練掌握并靈活運用相關(guān)的判定定理與性質(zhì)定理
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省衛(wèi)輝市高三2月月考數(shù)學(xué)理卷 題型:選擇題
下列命題中不正確命題的個數(shù)是( 。
①經(jīng)過空間一點一定可作一平面與兩異面直線都平行;
②已知平面、,直線a、b,若,,則;
③有兩個側(cè)面垂直于底面的四棱柱為直四棱柱;
④四個側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
⑥底面是等邊三角形,∠APB=∠BPC=∠CPA,則三棱錐P-ABC是正三棱錐.
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西師大附中2010屆高三第三次模擬考試數(shù)學(xué)(理) 題型:選擇題
下列命題中正確命題的個數(shù)是 ( )
①經(jīng)過空間一點一定可作一平面與兩異面直線都平行;
②已知平面、,直線a、b,若,,則;
③有兩個側(cè)面垂直于底面的四棱柱為直四棱柱;
④四個側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
⑥底面是等邊三角形,∠APB=∠BPC=∠CPA,則三棱錐P-ABC是正三棱錐.
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省合肥一中高二(上)第一次段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com