若函數(shù)f(x)=的定義域為R,則a的取值范圍為(    )。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P1(x1,y1)、P2(x2,y2)是函數(shù)f(x)=
2x
2x+
2
圖象上的兩點,且
OP
=
1
2
(
OP1
+
OP2
)
,點P的橫坐標(biāo)為
1
2

(1)求證:P點的縱坐標(biāo)為定值,并求出這個定值;
(2)若Sn=
n
i=1
f(
i
n
),n∈N*
,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n項和,若Tn<a(Sn+1+
2
)
對一切n∈N*都成立,試求a的取值范圍.
an-1+1=
an
n

(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)≤3-
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2,y2)
是f(x)圖象點的兩點,橫坐標(biāo)為
1
2
的點P是M,N的中點.
(1)求證:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2),求Sn

(3)設(shè)an=
1
4(Sn+1+1)(Sn+2+1)+1
,Tn為數(shù)列{an}前n項和,證明:Tn
17
52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)若任意直線l過點F(0,1),且與函數(shù)f(x)=
1
4
x2
的圖象C于兩個不同的點A,B過點A,BC,兩切線交于點M
(Ⅰ)證明:點M縱坐標(biāo)是一個定值,并求出這個定值;
(Ⅱ)若不等式f(x)≥g(x),g(x)=alnx(a>0),求實數(shù)a取值范圍;
(Ⅲ)求證:
2ln2
22
+
2ln3
32
+
2ln4
42
+…+
2ln
n2
n-1
e
,(其中e自然對數(shù)的底數(shù),n≥2,n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+log2(x∈(0,3)).

(1)求證:f(x)+f(3-x)為定值;

(2)記S(n)=(1+)(n∈N*),求S(n);

(3)若函數(shù)f(x)的圖象與直線x=1,x=2及x軸所圍成的封閉圖形的面積為S,試探究S(n)與S的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案