已知方程x2+(m-3)x+(7-m)=0的兩根都比3大,求m的取值范圍.
考點(diǎn):一元二次方程的根的分布與系數(shù)的關(guān)系
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)函數(shù)f(x)=x2+(m-3)x+(7-m),根據(jù)二次函數(shù)根的分布即可得到結(jié)論.
解答: 解:設(shè)f(x)=x2+(m-3)x+(7-m),
∵方程x2+(m-3)x+(7-m)=0的兩根都比3大,
△≥0
f(3)>0
-
m-3
2
≥3
,
△=(m-3)2-4(7-m)≥0
9+3(m-3)+7-m>0
m-3≤-6
,
m2-2m-19≥0
2m+7>0
m≤-3

m≥1+2
5
或m≤1-2
5
m>-
7
2
m≤-3
,
解得-
7
2
<m≤1-2
5
,
點(diǎn)評(píng):本題主要考查二次函數(shù)的圖象和性質(zhì),根據(jù)二次函數(shù)和二次方程之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)=(
1+i
1-i
n(n∈N*,i為虛數(shù)單位),則集合{x|x=f(n)}中元素的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),函數(shù)f(x)=
m
n
+2012
(1)化簡(jiǎn)f(x)的解析式,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知f(A)=2014,a=4,△ABC的面積為4
3
,試判定△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在學(xué)校組織的趣味數(shù)學(xué)知識(shí)競(jìng)賽中,甲、乙兩隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束,根據(jù)分組情況知除第五局甲隊(duì)獲勝的概率是
1
2
外,其余每局比賽甲隊(duì)獲勝的概率都是
2
3
,假設(shè)各局比賽結(jié)果相互對(duì)立.
(1)分別求乙隊(duì)以3:0,3:1,3:2獲勝的概率;
(2)若比賽結(jié)果為3:0或3:1,則勝利方得3分、對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對(duì)方得1分.求甲隊(duì)得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2,g(x)=elnx.
(Ⅰ)設(shè)函數(shù)F(x)=f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(Ⅱ)若存在常數(shù)k,m,使得f(x)≥kx+m,對(duì)x∈R恒成立,且g(x)≤kx+m,對(duì)x∈(0,+∞)恒成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”,試問(wèn):f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某產(chǎn)品的廣告支出x(單位:萬(wàn)元)與銷(xiāo)售收入y(單位:萬(wàn)元)之間有下表所對(duì)應(yīng)的數(shù)據(jù):
廣告支出x(單位:萬(wàn)元) 1 2 3 4
銷(xiāo)售收入y(單位:萬(wàn)元) 12 28 42 56
(Ⅰ)畫(huà)出表中數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)求出y對(duì)x的線(xiàn)性回歸方程;
(Ⅲ)若廣告費(fèi)為9萬(wàn)元,則銷(xiāo)售收入約為多少萬(wàn)元?參考:方程y=bx+a是兩個(gè)具有線(xiàn)性相關(guān)關(guān)系的變量的一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)的回歸方程,其中a,b是待定參數(shù).
b=
n
i=1
(xi-
.
x)
(yi-
.
y)
n
i=1
(xi-
.
x)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從一塊圓心角為
3
,半徑為R的扇形鋼板上切割一塊矩形鋼板,請(qǐng)問(wèn)怎樣設(shè)計(jì)切割方案,才能使矩形面積最大?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知PQ與圓O相切于點(diǎn)A,直線(xiàn)PBC交圓于B、C兩點(diǎn),D是圓上一點(diǎn),且AB∥CD,DC的延長(zhǎng)線(xiàn)交PQ于點(diǎn)Q
(1)求證:AC2=CQ•AB;
(2)若AQ=2AP,AB=
3
,BP=2,求QD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的n值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案