11.設(shè)a、b∈R,a2+2b2=2,則2a+b的最小值是-3.

分析 根據(jù)方程組有解消元后用判別式大于等于零建立關(guān)于t的不等式求出t的取值范圍,即得其最小值.

解答 解:可令2a+b=t,b=t-2a代入a2+2b2=2,
可得:9a2-8at+2t2-2=0,
由判別式64t2-36(2t2-2)≥0,可得-3≤t≤3,
則2a+b的最小值是-3,
故答案為:-3.

點評 本題考查了基本不等式問題,考查轉(zhuǎn)化思想,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在△ABC中,D,E分別是AB,AC的中點,DM=$\frac{1}{3}$DE,若$\overrightarrow{AB}$=a,$\overrightarrow{AC}$=b.
(1)用a,b表示$\overrightarrow{BM}$;
(2)若N為線段BC上的點,且BN=$\frac{1}{3}$BC,利用向量方法證明:A,M,N三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知A,B是銳角△ABC的兩個內(nèi)角,二次函數(shù)f(x)=m2x2-2m2x+1,那么( 。
A.f(sinA)>f(cosA)B.f(cosA)>f(sinA)C.f(cosA)>f(sinB)D.f(sinA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和是Sn,且Sn+$\frac{1}{2}$an=1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$lo{g}_{\frac{1}{3}}$(1-Sn+1)(n∈N*),求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{m}$=(cosωx,a),$\overrightarrow{n}$=(a,2+$\sqrt{3}$sinωx),ω>0,函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-5(a∈R,a≠0).
(1)當函數(shù)f(x)在x∈R上的最大值為3時,求a的值;
(2)在(1)的條件下,若函數(shù)y=f(x)-1在x∈(0,π]上至少有5個零點,求ω的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=3sin(x+$\frac{π}{4}$).
(1)用五點法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;
(2)寫出f(x)的值域、最小正周期、對稱軸,單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.數(shù)列{an}中,a1=1,an+1=-an+n2,求數(shù)列{an}的通項公式及a2000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)函數(shù)y=3cos(2x-$\frac{π}{3}$),x∈R在什么區(qū)間上是減函數(shù)?
(2)函數(shù)y=sin(-3x+$\frac{π}{4}$),x∈R在什么區(qū)間上是增函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.cosasin(a+$\frac{π}{6}$)+sinasin(a-$\frac{π}{3}$)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習冊答案