若奇函數(shù)f(x)=kax-a-x(a>0且a≠1)在R上是增函數(shù),那么的g(x)=loga(x+k)大致圖象是( )
A.
B.
C.
D.
【答案】分析:由函數(shù)f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函數(shù),又是增函數(shù),則由復合函數(shù)的性質,我們可得k=1,a>1,由此不難判斷函數(shù)的圖象.
解答:解:∵函數(shù)f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上是奇函數(shù)
則f(-x)+f(x)=0
即(k-1)ax-a-x=0
則k=1
又∵函數(shù)f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上是增函數(shù)
則a>1
則g(x)=loga(x+k)=loga(x+1)
函數(shù)圖象必過原點,且為增函數(shù)
故選C.
點評:若函數(shù)在其定義域為為奇函數(shù),則f(-x)+f(x)=0,若函數(shù)在其定義域為為偶函數(shù),則f(-x)-f(x)=0,這是函數(shù)奇偶性定義的變形使用,另外函數(shù)單調性的性質,在公共單調區(qū)間上:增函數(shù)-減函數(shù)=增函數(shù)也是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、若奇函數(shù)f(x)=kax-a-x(a>0且a≠1)在R上是增函數(shù),那么 的g(x)=loga(x+k)大致圖象是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點,
(1)設f(x)=x2-2,求函數(shù)f(x)的不動點;
(2)設f(x)=ax2+bx-b,若對任意實數(shù)b,函數(shù)f(x)都有兩個相異的不動點,求實數(shù)a的取值范圍;
(3)若奇函數(shù)f(x)(x∈R)存在K個不動點,求證:K為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點,
(1)設f(x)=x2-2,求函數(shù)f(x)的不動點;
(2)設f(x)=ax2+bx-b,若對任意實數(shù)b,函數(shù)f(x)都有兩個相異的不動點,求實數(shù)a的取值范圍;
(3)若奇函數(shù)f(x)(x∈R)存在K個不動點,求證:K為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省鄂州二中高一(上)模塊數(shù)學試卷(必修1)(解析版) 題型:選擇題

若奇函數(shù)f(x)=kax-a-x(a>0且a≠1)在R上是增函數(shù),那么的g(x)=loga(x+k)大致圖象是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案