在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)B、C的坐標(biāo)為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設(shè)頂點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)曲線E與y軸負(fù)半軸的交點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.
(1);(2)
解析試題分析:(1)由于所求動點(diǎn)A滿足直線AB,AC的斜率乘積為,所以直接設(shè)A的坐標(biāo),代入化簡整理即得:,注意到△ABC中三個(gè)頂點(diǎn)不能共線,所以需去掉與軸相交的點(diǎn),(2)要求的取值范圍,首先求出函數(shù)解析式,由題意確定l1的斜率為k為自變量,因?yàn)镸 為l1與曲線E的交點(diǎn),所以列方程組解出點(diǎn)M坐標(biāo),從而得出弦長;同理,只需將代k就可得到,因此△DMN的面積S=,所以=,這可以看作關(guān)于1+k2的一個(gè)分式函數(shù),即,可以利用函數(shù)單調(diào)性求出其取值范圍.
試題解析:解(1)設(shè)頂點(diǎn)A的坐標(biāo)為(x,y),則kAB=,kAC= 2分
因?yàn)閗AB×kAC=,所以, 即.(或x2+4y2=4).
所以曲線E的方程為. 4分
(2)曲線E與y軸負(fù)半軸的交點(diǎn)為D(0,-1).
因?yàn)閘1的斜率存在,所以設(shè)l1的方程為y=kx-1, 代入,得
從而 6分
用代k得
所以△DMN的面積S= 8分
則=
因?yàn)閗≠0且,k≠±2,令1+k2=t,
則t>1,且,t≠5,
從而=
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/88/1/0txqd.png" style="vertical-align:middle;" />,且,
所以且,
從而且,,
即∈ 10分.
考點(diǎn):直接法求軌跡方程,直線與圓錐曲線關(guān)系,求函數(shù)范圍
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,直線l1和l2相交于點(diǎn)M,l1⊥l2,點(diǎn)N∈l1,以A、B為端點(diǎn)的曲線段C上任一點(diǎn)到l2的距離與到點(diǎn)N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(-a,0).若|AB|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形CDEF內(nèi)接于橢圓,且它的四條邊與坐標(biāo)軸平行,正方形GHPQ的頂點(diǎn)G,H在橢圓上,頂點(diǎn)P,Q在正方形的邊EF上.且CD=2PQ=.
(1)求橢圓的方程;
(2)已知點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m:≠0),l交橢圓于A,B兩個(gè)不同點(diǎn),求證:直線MA,MB與x軸始終圍成一個(gè)等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)C在拋物線的準(zhǔn)線上,且BC∥x軸,證明:直線AC經(jīng)過原點(diǎn)O.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C1:+=1(a>b>0)的右頂點(diǎn)為A(1,0),過C1的焦點(diǎn)且垂直長軸的弦長為1.
(1)求橢圓C1的方程;
(2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(h∈R)上,C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),求h的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A,B分別是橢圓C1:+=1的左、右頂點(diǎn),P是橢圓上異于A,B的任意一點(diǎn),Q是雙曲線C2:-=1上異于A,B的任意一點(diǎn),a>b>0.
(1)若P(,),Q(,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:=1(a>b>0)的右焦點(diǎn)為F,過原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2+y2=的切線L與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),OP(O為坐標(biāo)原點(diǎn))與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com