【題目】目前有聲書正受著越來越多人的喜愛.某有聲書公司為了解用戶使用情況,隨機選取了名用戶,統(tǒng)計出年齡分布和用戶付費金額(金額為整數(shù))情況如下圖.

有聲書公司將付費高于元的用戶定義為“愛付費用戶”,將年齡在歲及以下的用戶定義為“年輕用戶”.已知抽取的樣本中有的“年輕用戶”是“愛付費用戶”.

(1)完成下面的列聯(lián)表,并據(jù)此資料,能否有的把握認為用戶“愛付費”與其為“年輕用戶”有關(guān)?

愛付費用戶

不愛付費用戶

合計

年輕用戶

非年輕用戶

合計

(2)若公司采用分層抽樣方法從“愛付費用戶”中隨機選取人,再從這人中隨機抽取人進行訪談,求抽取的人恰好都是“年輕用戶”的概率.

【答案】(1)有的把握認為“愛付費用戶”和“年輕用戶”有關(guān);(2).

【解析】

1)根據(jù)題意可得列聯(lián)表,然后根據(jù)表中的數(shù)據(jù)求出后與臨界值表中的數(shù)據(jù)對照后可得結(jié)論.(2)根據(jù)古典概型概率公式求解可得所求概率.

(1)根據(jù)題意可得列聯(lián)表如下:

愛付費用戶

不愛付費用戶

合計

年輕用戶

非年輕用戶

合計

由表中數(shù)據(jù)可得,

所以有

(2)由分層抽樣可知,抽取的人中有人為“年輕用戶”,記為,,,人為“非年輕用戶”,記為

則從這人中隨機抽取人的基本事件有:,,,

,,,共個基本事件.

其中滿足抽取的人均是“年輕用戶”的事件有:,,,,共個.

所以從中抽取人恰好都是“年輕用戶”的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)若曲線在點處的切線方程為,其中是自然對數(shù)的底數(shù),求的值:

(Ⅱ)若函數(shù)內(nèi)的減函數(shù),求正數(shù)的取值范圍;

(Ⅲ)若方程無實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面,,,,.

(1)當(dāng)變化時,點到平面的距離是否為定值?若是,請求出該定值;若不是,請說明理由;

(2)當(dāng)直線與平面所成的角為45°時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為滿足人們的閱讀需求,圖書館設(shè)立了無人值守的自助閱讀區(qū),提倡人們在閱讀后將圖書分類放回相應(yīng)區(qū)域.現(xiàn)隨機抽取了某閱讀區(qū)500本圖書的分類歸還情況,數(shù)據(jù)統(tǒng)計如下(單位:本).

文學(xué)類專欄

科普類專欄

其他類專欄

文學(xué)類圖書

100

40

10

科普類圖書

30

200

30

其他圖書

20

10

60

1)根據(jù)統(tǒng)計數(shù)據(jù)估計文學(xué)類圖書分類正確的概率;

2)根據(jù)統(tǒng)計數(shù)據(jù)估計圖書分類錯誤的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發(fā)生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴格管控下,我國的疫情已經(jīng)得到了很好的控制.然而,小王同學(xué)發(fā)現(xiàn),每個國家在疫情發(fā)生的初期,由于認識不足和措施不到位,感染人數(shù)都會出現(xiàn)快速的增長.下表是小王同學(xué)記錄的某國連續(xù)8天每日新型冠狀病毒感染確診的累計人數(shù).

日期代碼

1

2

3

4

5

6

7

8

累計確診人數(shù)

4

8

16

31

51

71

97

122

為了分析該國累計感染人數(shù)的變化趨勢,小王同學(xué)分別用兩種模型:①,②對變量的關(guān)系進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,殘差圖如下(注:殘差):經(jīng)過計算得,,,其中,.

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個模型?并簡要說明理由;

2)根據(jù)(1)問選定的模型求出相應(yīng)的回歸方程(系數(shù)均保留一位小數(shù));

3)由于時差,該國截止第9天新型冠狀病毒感染確診的累計人數(shù)尚未公布.小王同學(xué)認為,如果防疫形勢沒有得到明顯改善,在數(shù)據(jù)公布之前可以根據(jù)他在(2)問求出的回歸方程來對感染人數(shù)作出預(yù)測,那么估計該地區(qū)第9天新型冠狀病毒感染確診的累計人數(shù)是多少.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)是自然對數(shù)的底數(shù)).

)若,證明:曲線沒有經(jīng)過點的切線;

)若函數(shù)在其定義域上不單調(diào),求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(1)當(dāng)時,的零點個數(shù);

(2)若的整數(shù)解有且唯一,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某公司生產(chǎn)線生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo),由檢測結(jié)果得如圖所示的頻率分布直方圖:

(1)求這1000件產(chǎn)品質(zhì)量指標(biāo)的樣本平均數(shù)和樣本方差 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.

(i)利用該正態(tài)分布,求;

(ⅱ)已知每件該產(chǎn)品的生產(chǎn)成本為10元,每件合格品(質(zhì)量指標(biāo)值)的定價為16元;若為次品(質(zhì)量指標(biāo)值),除了全額退款外且每件次品還須賠付客戶48元.若該公司賣出10件這種產(chǎn)品,記表示這件產(chǎn)品的利潤,求.

附:,若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,為側(cè)棱上的點.

(1)求證:;

(2)若平面,求二面角的大小;

(3)在(2)的條件下,側(cè)棱上是否存在一點,使得平面.若存在,求的值;若不存在,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案