已知-1≤x≤0,求函數(shù)y=2x+2-3•4x的最大值和最小值.
令y=2x+2-3•4x=-3•(2x2+4•2x(3分)
令t=2x,則y=-3t2+4t=-3(t-
2
3
)2+
4
3
(6分)
∵-1≤x≤0,∴
1
2
2x≤1即t∈[
1
2
,1]
(8分)
又∵對(duì)稱(chēng)軸t=
2
3
∈[
1
2
,1]

∴當(dāng)t=
2
3
,即x=log2
2
3
時(shí)ymax=
4
3
(10分)
當(dāng)t=1即x=0時(shí),ymin=1(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-1≤x≤0,求函數(shù)y=2x+2-3•4x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算0.064 -
1
3
-(-
1
8
0+16 
3
4
+0.25 
1
2
+2log36-log312;
(2)已知-1≤x≤0,求函數(shù)y=2x+2-3•4x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知-1≤x≤0,求函數(shù)y=4•2x-3•4x的最大值和最小值.
(2)已知函數(shù)f(x)=x+
4x
.判斷f(x)在(0,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0103 期中題 題型:解答題

已知-1≤x≤0,求函數(shù)y=4·2x-3·4x的最大值和最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案