1.已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB⊥BC,AB=6,BC=8,AA1=5,則該幾何體的表面積是( 。
A.216B.168C.144D.120

分析 該幾何體的表面積S=2S△ABC+${S}_{矩形AB{B}_{1}{A}_{1}}$+${S}_{矩形BC{C}_{1}{B}_{1}}$+${S}_{矩形AC{C}_{1}{A}_{1}}$,由此能求出結(jié)果.

解答 解:如圖,∵三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB⊥BC,AB=6,BC=8,AA1=5,
∴該幾何體的表面積:
S=2S△ABC+${S}_{矩形AB{B}_{1}{A}_{1}}$+${S}_{矩形BC{C}_{1}{B}_{1}}$+${S}_{矩形AC{C}_{1}{A}_{1}}$
=2×$\frac{1}{2}×6×8$+6×5+8×5+$\sqrt{{6}^{2}+{8}^{2}}$×5
=168.
故選:B.

點(diǎn)評(píng) 本題考查三棱柱的表面積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若點(diǎn)(a,b)在函數(shù)f(x)=lnx的圖象上,則下列點(diǎn)中不在函數(shù)f(x)圖象上的是( 。
A.($\frac{1}{a}$,-b)B.(a+e,1+b)C.($\frac{e}{a}$,1-b)D.(a2,2b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a22=37,S22=352.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an•2${\;}^{{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線l:y=k(x+1)-$\sqrt{3}$與圓x2+y2=12交于A、B兩點(diǎn),過A、B分別做l的垂線與x軸交于C、D兩點(diǎn),若|AB|=4$\sqrt{3}$,則|CD|=8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合U={0,1,2,3,4,5,6},A={0,1,3,5},B={1,2,4},那么A∩(∁UB)=(  )
A.{6}B.{0,3,5}C.{0,3,6}D.{0,1,3,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知P1,P2分別為直線l1:x+3y-9=0和l2:x+3y+1=0上的動(dòng)點(diǎn),則|P1P2|的最小值是$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.F1、F2分別是橢圓x2+2y2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,線段PF2與y軸的交點(diǎn)為M,且$\overrightarrow{{F}_{1}M}$=$\frac{1}{2}$($\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{{F}_{1}P}$),則點(diǎn)M到坐標(biāo)原點(diǎn)O的距離是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=xex,g(x)=-(x+1)2+a,若存在x1,x2∈R,使得f(x2)≤g(x1)成立,則實(shí)數(shù)a的取值范圍為( 。
A.$[\frac{1}{e}$,+∞)B.$[-\frac{1}{e}$,+∞)C.(0,e)D.$[-\frac{1}{e}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=$\sqrt{{2}^{{x}^{2}+2ax-a}-1}$的定義域?yàn)镽,則a的取值范圍是[-1,0].

查看答案和解析>>

同步練習(xí)冊(cè)答案