【題目】關(guān)于曲線,給出下列四個結(jié)論:

①曲線C關(guān)于原點對稱,但不關(guān)于x軸、y軸對稱;

②曲線C恰好經(jīng)過4個整點(即橫、縱坐標均為整數(shù)的點);

③曲線C上任意一點都不在圓的內(nèi)部;

④曲線C上任意一點到原點的距離都不大于

其中,正確結(jié)論的序號是________

【答案】①④

【解析】

根據(jù)關(guān)于原點、x軸、y軸對稱的橫縱坐標特點,代入即可判斷①;取的整數(shù)值,代入求得的值即可判斷②;由基本不等式確定的最大值,即可判斷③;由兩點間距離公式及基本不等式,化簡即可判斷④;

曲線,

對于①,將替換,替換,代入可得,所以曲線C關(guān)于原點對稱;

替換,代入可得,所以曲線C不關(guān)于y軸對稱;

替換,代入可得,所以曲線C不關(guān)于軸對稱;所以①正確;

對于②,當時,代入可得,所以經(jīng)過

時,代入可得,所以經(jīng)過;

時,代入可得,所以經(jīng)過;

時,代入可得,所以經(jīng)過;

所以至少有六個整點在曲線C上,所以②錯誤;

對于③,由可知,

所以,解得

,則

同理,解得,

所以,則③錯誤;

對于④,由③可知

所以,故④正確,

綜上可知,正確的為①④,

故答案為:①④.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導函數(shù).

(1)求證:上存在唯一零點;

(2)求證:有且僅有兩個不同的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級學生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學生的測試成績,整理數(shù)據(jù)并按分數(shù)段進行分組,假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,則得到體育成績的折線圖(如下):

(Ⅰ)體育成績大于或等于70分的學生常被稱為“體育良好”.已知該校高一年級有1000名學生,試估計高一全年級中“體育良好”的學生人數(shù);

(Ⅱ)為分析學生平時的體育活動情況,現(xiàn)從體育成績在的樣本學生中隨機抽取2人,求在抽取的2名學生中,至少有1人體育成績在的概率;

(Ⅲ)假設甲、乙、丙三人的體育成績分別為且分別在三組中,其中當數(shù)據(jù)的方差最小時,寫出的值.(結(jié)論不要求證明)

(注: ,其中為數(shù)據(jù)的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓上的三個點,為坐標原點.

(1)所在的直線方程為,求的長;

(2)為線段上一點,且,當中點恰為點時,判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,底面為梯形,,,且,,

I)求證:;

II)求二面角_____的余弦值;

從①,②,③這三個條件中任選一個,補充在上面問題中并作答.注:如果選擇多個條件分別解答,按第一個解答計分.

III)若是棱的中點,求證:對于棱上任意一點都不平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了勾股圓方圖,又稱趙爽弦圖(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比趙爽弦圖,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綠水青山就是金山銀山的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展.下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:

年份

2014

2015

2016

2017

2018

銷量(萬臺)

8

10

13

25

24

某機構(gòu)調(diào)查了該地區(qū)30位購車車主的性別與購車種類情況,得到的部分數(shù)據(jù)如下表所示:

購置傳統(tǒng)燃油車

購置新能源車

總計

男性車主

6

24

女性車主

2

總計

30

1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷是否線性相關(guān);

2)請將上述列聯(lián)表補充完整,并判斷是否有的把握認為購車車主是否購置新能源乘用車與性別有關(guān);

3)若以這30名購車車主中購置新能源乘用車的車主性別比例作為該地區(qū)購置新能源乘用車的車主性別比例,從該地區(qū)購置新能源乘用車的車主中隨機選取50,記選到女性車主的人數(shù)為X,X的數(shù)學期望與方差.

參考公式:,其中.,若,則可判斷線性相關(guān).

附表:

010

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點EF分別是棱PC、PD的中點,則

①棱ABPD所在直線垂直;

②平面PBC與平面ABCD垂直;

③△PCD的面積大于△PAB的面積;

④直線AE與直線BF是異面直線.

以上結(jié)論正確的是________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

同步練習冊答案