【題目】20世紀30年代,里克特(C.F.Richter)制定了一種表明地震能量大小的尺度,就是使用測震儀地震能量的等級,地震能量越大,測震儀記錄的地震曲線的振幅就越大,這就是我們常說的里氏震級M,其計算公式為其中,A是被測量地震的最大振幅,是“標準地震”的振幅(使用標準地震振幅是為了修正測震儀距實際的距離造成的偏差),眾所周知,5級地震已經(jīng)比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的______.

【答案】1000

【解析】

先根據(jù)求得地震最大振幅關(guān)于M的函數(shù),將震級代入分別求出最大振幅,最后求出兩次地震的最大振幅之比即可.

可得,即,

時,地震的最大振幅為;當時,地震的最大振幅為;

所以,兩次地震的最大振幅之比是:,即8級地震的最大振幅是5級地震的最大振幅的1000倍.

故答案為:1000

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,交于點,底面,點為線段中點,.

(1)求直線所成角的正弦值;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三學生體檢后,為了解高三學生的視力情況,該校從高三六個班的300名學生中以班為單位(每班學生50人),每班按隨機抽樣方法抽取了8名學生的視力數(shù)據(jù).其中高三(1)班抽取的8名學生的視力數(shù)據(jù)與人數(shù)見下表:

視力數(shù)據(jù)

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

人數(shù)

2

2

2

1

1

(1)用上述樣本數(shù)據(jù)估計高三(1)班學生視力的平均值;

(2)已知其余五個班學生視力的平均值分別為4.3、4.4、4.5、4.6、4.8.若從這六個班中任意抽取兩個班學生視力的平均值作比較,求抽取的兩個班學生視力的平均值之差的絕對值不小于0.2的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)設點.若直線與曲線相交于不同的兩點,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】無窮數(shù)列 ,若存在正整數(shù),使得該數(shù)列由個互不相同的實數(shù)組成,且對于任意的正整數(shù),中至少有一個等于,則稱數(shù)列具有性質(zhì).集合.

(1)若,,判斷數(shù)列是否具有性質(zhì);

(2)數(shù)列具有性質(zhì),且,求的值;

(3)數(shù)列具有性質(zhì),對于中的任意元素,為第個滿足的項,記 ,證明:數(shù)列具有性質(zhì)的充要條件為數(shù)列是周期為的周期數(shù)列,且每個周期均包含個不同實數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù)

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校名學生的數(shù)學期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是,,,,,.

求圖中的值;

根據(jù)頻率分布直方圖,估計這名學生的平均分;

若這名學生的數(shù)學成績中,某些分數(shù)段的人數(shù)與英語成績相應分數(shù)段的人數(shù)之比如表所示,求英語成績在的人數(shù).

分數(shù)段

:5

1:2

1:1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,若過且傾斜角為的直線交,兩點,滿足.

(1)求拋物線的方程;

(2)若上動點,,軸上,圓內(nèi)切于,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)判斷并證明的單調(diào)性;

(Ⅱ)是否存在實數(shù),使函數(shù)為奇函數(shù)?證明你的結(jié)論;

(Ⅲ)在(Ⅱ)的條件下,當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案