【題目】如圖所示,邊長為a的空間四邊形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,則異面直線AD與BC所成角的大小為( 。
A. 30°B. 45°C. 60°D. 90°
【答案】C
【解析】
由題意得,,從而,,取中點(diǎn),連結(jié),,從而平面,延長至點(diǎn),使,連結(jié),,,則四邊形為正方形,即有,從而(或其補(bǔ)角)即為異面直線與所成角,由此能求出異面直線與所成角的大。
由題意得BC=CD=a,∠BCD=90°,
∴BD=,∴∠BAD=90°,
取BD中點(diǎn)O,連結(jié)AO,CO,
∵AB=BC=CD=DA=a,
∴AO⊥BD,CO⊥BD,且AO=BO=OD=OC=,
又∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊥BD,
∴AO⊥平面BCD,
延長CO至點(diǎn)E,使CO=OE,連結(jié)ED,EA,EB,
則四邊形BCDE為正方形,即有BC∥DE,
∴∠ADE(或其補(bǔ)角)即為異面直線AD與BC所成角,
由題意得AE=a,ED=a,
∴△AED為正三角形,∴∠ADE=60°,
∴異面直線AD與BC所成角的大小為60°.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直棱柱中,,,,分別是棱,上的點(diǎn),且平面.
(1)證明:;
(2)若為中點(diǎn),求直線與直線所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若對(duì)任意,恒成立,求的值;
(2)設(shè),若沒有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若存在正數(shù),使恒成立,求實(shí)數(shù)的最大值;
(2)設(shè),若沒有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高一期中考試結(jié)束后,從高一年級(jí)1000名學(xué)生中任意抽取50名學(xué)生,將這50名學(xué)生的某一科的考試成績(滿分150分)作為樣本進(jìn)行統(tǒng)計(jì),并作出樣本成績的頻率分布直方圖(如圖).
(1)由于工作疏忽,將成績[130,140)的數(shù)據(jù)丟失,求此區(qū)間的人數(shù)及頻率分布直方圖的中位數(shù);(結(jié)果保留兩位小數(shù))
(2)若規(guī)定考試分?jǐn)?shù)不小于120分為優(yōu)秀,現(xiàn)從樣本的優(yōu)秀學(xué)生中任意選出3名學(xué)生,參加學(xué)習(xí)經(jīng)驗(yàn)交流會(huì).設(shè)X表示參加學(xué)習(xí)經(jīng)驗(yàn)交流會(huì)的學(xué)生分?jǐn)?shù)不小于130分的學(xué)生人數(shù),求X的分布列及期望;
(3)視樣本頻率為概率.由于特殊原因,有一個(gè)學(xué)生不能到學(xué)校參加考試,根據(jù)以往考試成績,一般這名學(xué)生的成績應(yīng)在平均分左右.試根據(jù)以上數(shù)據(jù),說明他若參加考試,可能得多少分?(每組數(shù)據(jù)以區(qū)問的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
以平面直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線l的坐標(biāo)方程為,曲線C的參數(shù)方程為(θ為參數(shù)).
(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)以曲線C上的動(dòng)點(diǎn)M為圓心、r為半徑的圓恰與直線l相切,求r的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的機(jī)器上存在一種易損元件,這種元件發(fā)生損壞時(shí),需要及時(shí)維修. 現(xiàn)有甲、乙兩名工人同時(shí)從事這項(xiàng)工作,下表記錄了某月1日到10日甲、乙兩名工人分別維修這種元件的件數(shù).
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 | 8日 | 9日 | 10日 |
甲維修的元件數(shù) | 3 | 5 | 4 | 6 | 4 | 6 | 3 | 7 | 8 | 4 |
乙維修的元件數(shù) | 4 | 7 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 7 |
(1)從這天中,隨機(jī)選取一天,求甲維修的元件數(shù)不少于5件的概率;
(2)試比較這10天中甲維修的元件數(shù)的方差與乙維修的元件數(shù)的方差的大小.(只需寫出結(jié)論);
(3)由于甲、乙的任務(wù)量大,擬增加工人,為使增加工人后平均每人每天維修的元件不超過3件,請(qǐng)利用上表數(shù)據(jù)估計(jì)最少需要增加幾名工人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面是邊長為4的等邊三角形,,為的中點(diǎn).
(1)證明:平面.
(2)若是等邊三角形,求二面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com