【題目】P(2,-1)為圓(x-1)2y2=25的弦AB的中點(diǎn),則直線AB的方程是 (  )

A. xy-3=0 B. 2xy-3=0 C. xy-1=0 D. 2xy-5=0

【答案】A

【解析】

試題分析:設(shè)圓心為C1,0),則AB⊥CP,∵kCP=-1,∴kAB1,直線AB的方程是y1x2,即xy30.故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的是( )

A. 用一個(gè)平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺(tái)

B. 平行四邊形的直觀圖是平行四邊形

C. 有兩個(gè)面平行,其余各面都是平行四邊行的幾何體叫棱柱

D. 正方形的直觀圖是正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式

(2)若,不等式恒成立,求的取值范圍;

(3)若關(guān)于的方程的解集中恰好有一個(gè)元素,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程分別是為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極

坐標(biāo)系,曲線的極坐標(biāo)方程為.

1求曲線的直角坐標(biāo)方程與直線的極坐標(biāo)方程;

2若直線與曲線交于點(diǎn)不同于原點(diǎn),與直線交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1若函數(shù)處取得極值,求曲線在點(diǎn)處的切線方程;

2討論函數(shù)的單調(diào)性;

3設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,,

1)若點(diǎn)的中點(diǎn),求證:平面;

2)若點(diǎn)在線段上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的是(  )

A. abac2bc2 B. aba2b2

C. aba3b3 D. a2b2ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,點(diǎn),直線設(shè)圓的半徑為1,圓心在直線

(1)若圓心也在直線,過(guò)點(diǎn)作圓的切線求切線的方程;

(2)若圓上存在點(diǎn),使求圓心的橫坐標(biāo)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合M={x|x2+2x﹣3≥0},N={x|log2x≤1},則(UM)∪N=(  )

A. {x|﹣1≤x≤2} B. {x|﹣1≤x≤3} C. {x|﹣3<x≤2} D. {x|0<x<1}

查看答案和解析>>

同步練習(xí)冊(cè)答案