【題目】已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1﹣x).
(1)求f(x)及g(x)的解析式;
(2)求g(x)的值域.
【答案】
(1)因?yàn)閒(x)是偶函數(shù),g(x)是奇函數(shù),
所以f(﹣x)=﹣f(x),g(﹣x)=g(x),
令x取﹣x代入f(x)+g(x)=2log2(1﹣x),①
得f(﹣x)+g(﹣x)=2log2(1+x),即﹣f(x)+g(x)=2log2(1+x),②
聯(lián)立①②可得,f(x)=log2(1﹣x)﹣log2(1+x)= (﹣1<x<1),
g(x)=log2(1﹣x)+log2(1+x)=log2(1﹣x)(1+x)= (﹣1<x<1)
(2)解:設(shè)t=1﹣x2,由﹣1<x<1得0<t≤1,
所以函數(shù)y=log2t的值域是(﹣∞,0],
故g(x)的值域是(﹣∞,0]
【解析】(1)由題意和函數(shù)奇偶性得:f(﹣x)=﹣f(x),g(﹣x)=g(x),令x取﹣x代入f(x)+g(x)=2log2(1﹣x)化簡(jiǎn)后,聯(lián)立原方程求出f(x)和g(x),由對(duì)數(shù)的運(yùn)算化簡(jiǎn),由對(duì)數(shù)函數(shù)的性質(zhì)求出函數(shù)的定義域;(2)設(shè)t=1﹣x2 , 由﹣1<x<1得0<t≤1,利用對(duì)數(shù)函數(shù)的性質(zhì)求出g(x)的值域.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的值域和函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)當(dāng)a=2時(shí),求A∪B
(2)當(dāng)BA時(shí),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)在上的最值;
(2)令,若時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)且時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則不等式a(x2+1)+b(x﹣1)+c>2ax的解集為( )
A.{x|0<x<3}
B.{x|x<0或x>3}
C.{x|﹣2<x<1}
D.{x|x<﹣2或x>1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U為R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}
求:(I)A∩B;
(II)(CUA)∩(CUB);
(III)CU(A∪B).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程.
在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫(xiě)出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過(guò)點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,已知a1=1,a2=2,an+2= (k∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求滿足2an+1=an+an+2的正整數(shù)n的值;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 問(wèn)是否存在正整數(shù)m,n,使得S2n=mS2n﹣1?若存在,求出所有的正整數(shù)對(duì)(m,n);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集A={a1 , a2…an}(0≤a1<a2…<an , n≥2)具有性質(zhì)P;對(duì)任意的 i,j(1≤i≤j≤n),ai+aj與aj﹣ai兩數(shù)中至少有一個(gè)屬于A.
(1)分別判斷數(shù)集{0,1,3,4}與{0,2,3,6}是否具有性質(zhì)P,并說(shuō)明理由;
(2)證明:a1=0,且nan=2(a1+a2+a+..+an)
(3)當(dāng)n=5時(shí)若 a2=2,求集合A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)是定義在(0,+∞)上的函數(shù),且對(duì)任意的正實(shí)數(shù)x1 , x2均有:(x1﹣x2)[f(x1)﹣f(x2)]>0,則不等式f(x)﹣f(8x﹣16)>0的解集是( )
A.(0,+∞)
B.(0,2)
C.(2,+∞)
D.(2, )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com